Modeling and Optimization Analysis for Base-Excited Magnetostrictive Vibration Harvester

Author(s):  
Huifang Liu ◽  
Wencheng Li ◽  
Xingwei Sun ◽  
Yunlong Chang ◽  
Yifei Gao

Due to the low vibration frequency and weak vibration energy in natural environment, the vibration energy harvester is faced with the problem of low power and low adaptability and becoming particularly difficult in actual conditions. It is necessary to improve the harvesting capacity and efficiency by optimizing the parameters of the harvester, making full use of the energy of low and unstable atmospheric vibrations. In this paper, a mathematical model is established for the cantilever magnetostrictive vibration harvester under the base excitation, including the mechanical deformation of the composite beam, and the electromagnetic results produced thereof. The mechanical-magneticelectric energy conversion relationship is duly taken into account. The additional weight, coil parameters, external resistance and other parameters of the harvester are optimized and analyzed through numerical simulation. In addition, the theoretical results are analyzed and discussed via comparison with experiments. Finally, the effects of the above factors are assessed, which allows us to obtain the optimal winding length, number of turns of the coil, and optimal tip additional mass. The experiment result shows that the optimized magnetostrictive harvester can output 12.07[Formula: see text]mW power to the external resistor under the condition of 1[Formula: see text]g acceleration mechanical vibration, with normalized power density reaching 40.2[Formula: see text]mW/cm3/g. Moreover, the optimized magnetostrictive harvester can successfully supply power for the LED display screen of the temperature sensor and a low-power thermometer.

Author(s):  
Haiping Liu ◽  
Dongmei Zhu

The paper concerns the dynamic responses and vibration energy harvesting characteristics in an electromagnetic vibration energy harvester comprising three-parameter mechanical vibration subsystem. For completeness and comparison, a two-parameter vibration energy harvester is also presented. The analytical expressions of the amplitude-frequency and phase-frequency responses of the inertial mass and the current in the electrical circuit are respectively derived by applying dimensionless method to the studied two- and three-parameter dynamic systems. Considering the effects of different types of ambient excitation, a single-frequency harmonic load and a periodic load are introduced into the analytical expressions on the dynamic performance of the vibration energy harvester. First of all, the influences of the designing parameters from the mechanical vibration subsystem and the electrical circuit subsystem on the vibration energy harvester are investigated. For evaluating the effects due to introducing the three-parameter mechanical vibration component, comparisons are made between two- and three-parameter vibration energy harvesters to convert the ambient excitations into electrical energy. And then, the expressions of the dimensionless average power which delivered into an electrical load under a single-frequency harmonic excitation or a periodic excitation are derived. The calculating results show that the energy conversion efficiency is enhanced significantly by changing the mechanical damping efficiency and the stiffness ratio for the three-parameter mechanical component of the energy harvester. At the same time, the average power of the three-parameter vibration energy harvester, which delivered into the electrical load, is also improved. However, the influences of the electrical circuit component on the ambient energy harvesting can be omitted when keeping the designing parameters of the mechanical part constant.


Author(s):  
Onur Bilgen ◽  
S. Faruque Ali ◽  
Michael I. Friswell ◽  
Grzegorz Litak ◽  
Marc de Angelis

An inverted cantilevered beam vibration energy harvester with a tip mass is evaluated for its electromechanical efficiency and power output capacity in the presence of pure harmonic, pure random and various combinations of harmonic and random base excitation cases. The energy harvester employs a composite piezoelectric material device that is bonded near the root of the beam. The tip mass is used to introduce non-linearity to the system by inducing buckling in some configurations and avoiding it in others. The system dynamics include multiple solutions and jumps between the potential wells, and these are exploited in the harvesting device. This configuration exploits the non-linear properties of the system using base excitation in conjunction with the tip mass at the end of the beam. Such nonlinear device has the potential to work well when the input excitation does not have a dominant harmonic component at a fixed frequency. The paper presents an extensive experimental analysis, results and interesting conclusions derived directly from the experiments supported by numerical simulations.


2014 ◽  
Vol 592-594 ◽  
pp. 2297-2302
Author(s):  
Prasanta Kumar Samal ◽  
Pramod Kumar Malik ◽  
Avinash Babu ◽  
G.C. Shanthakumar

In the immediate surroundings of our daily life, we can find a lot of places where the energy in the form of vibration is being wasted. Therefore, we have enormous opportunities to utilize the same. Piezoelectric character of matter enables us to convert this mechanical vibration energy into electrical energy which can be stored and used to power other device, instead of being wasted. This work is done to realize both actuator and sensor in a cantilever beam based on piezoelectricity. The sensor part is called vibration energy harvester. The numerical analyses were performed for the cantilever beam using the commercial package ANSYS and MATLAB. The cantilever beam is realized by taking a plate and fixing its one end between two massive plates. Two PZT patches were glued to the beam on its two faces. Experiments were performed using data acquisition system (DAQ) and LABVIEW software for actuating and sensing the vibration of the cantilever beam.


Author(s):  
Enrico Bischur ◽  
Sebastian Pobering ◽  
Markus Menacher ◽  
Norbert Schwesinger

This paper describes an energy harvester working with the repeated deflection of a piezoelectric cantilever. The harvester works in flowing media like wind or water. The bending of the cantilever is driven by vortices traveling across it. The presented device is an easy solution for vibration energy harvesting without the need of external mechanical vibration. The working principle was determined with macroscopic models in wind and water channels. The harvester does not need in general a mechanical adaption to the external vibration frequency, because it oscillates always with its resonance frequency at different flow velocities. Furthermore a self synchronization of cantilevers arranged beside each other could be observed in water. A second system was able to supply a load of approximatly 2 mW in a wind channel at a flow velocity of 8 m/s.


Actuators ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 327
Author(s):  
Aicheng Zou ◽  
Zhong Liu ◽  
Xingguo Han

Existing piezoelectric vibration energy harvesting circuits require auxiliary power for the switch control module and are difficult to adapt to broadband piezoelectric vibration energy harvesters. This paper proposes a self-powered and low-power enhanced double synchronized switch harvesting (EDSSH) circuit. The proposed circuit consists of a low-power follow-up switch control circuit, reverse feedback blocking-up circuit, synchronous electric charge extraction circuit and buck-boost circuit. The EDSSH circuit can automatically adapt to the sinusoidal voltage signal with the frequency of 1 to 312.5 Hz that is output by the piezoelectric vibration energy harvester. The switch control circuit of the EDSSH circuit works intermittently for a very short time near the power extreme point and consumes a low amount of electric energy. The reverse feedback blocking-up circuit of the EDSSH circuit can keep the transmission efficiency at the optimal value. By using a charging capacitor of 1 mF, the charging efficiency of the proposed EDSSH circuit is 1.51 times that of the DSSH circuit.


2017 ◽  
Vol 29 (6) ◽  
pp. 1216-1235 ◽  
Author(s):  
Chunbo Lan ◽  
Lihua Tang ◽  
Weiyang Qin ◽  
Liuyang Xiong

This article investigates a dual-beam vibration energy harvester in which two piezoelectric cantilever beams are coupled by magnets. The analytical solution of such a vibration energy harvester system is derived. The dynamic responses and energy harvesting performances in quasi-linear, monostable and bistable regions are evaluated. With the analytical model validated by numerical simulation, a comprehensive parametric analysis is conducted to evaluate the effects of base excitation, ratio of natural frequencies and electromechanical coupling, revealing the benefits and limitations of the dual-beam vibration energy harvester, which was not possible before without the analytical tool. The magnetic interaction provides the nonlinearity and can achieve high-energy oscillations for both beams at the same time for power enhancement. However, the analysis also ascertains that the trade-off between the dual beams should be made given the change of base excitation, ratio of natural frequencies and electromechanical coupling. For a certain range of excitation, the increased output of one beam is always accompanied by the decreased output of the other for the high-energy oscillations in both monostable and bistable configurations. By and large, the operational bandwidth is enlarged for both beams owing to the co-occurrence of high-energy oscillations of the dual beams, while the performance of the system as a whole is somewhat restricted by the trade-off.


2013 ◽  
Vol 724-725 ◽  
pp. 1427-1430
Author(s):  
Shan Shan Li ◽  
Zheng Bin Wu ◽  
Yi Kun Su ◽  
Kui Xi

This paper reports the establishment of a piezoelectric vibration energy harvester for electric vehicle (EV) applications. Finite element analysis results, which agree experimental outcome well, have demonstrated that the piezoelectric vibrator can produce 1 V DC electric signal under 2 mm amplitude mechanical vibration at lower frequency. The energy harvester comprising two piezoelectric vibrators connected in series charged a Ni-MH secondary battery from 1.17 V to 1.24 V. It is verified that this piezoelectric energy harvester can be used in EVs and will potentially improve the energy use efficiency and performance of EVs.


Sign in / Sign up

Export Citation Format

Share Document