The proof of a conjecture in Jacobson graph of a commutative ring

2015 ◽  
Vol 14 (10) ◽  
pp. 1550107 ◽  
Author(s):  
S. Akbari ◽  
S. Khojasteh ◽  
A. Yousefzadehfard

Let R be a commutative ring with nonzero identity. The Jacobson graph of R denoted by 𝔍R is a graph with the vertex set R\J(R), and two distinct vertices x, y ∈ V(𝔍R) are adjacent if and only if 1 - xy ∉ U(R), where U(R) is the set of all unit elements of R. Let ω(𝔍R) denote the clique number of 𝔍R. It was conjectured that if [Formula: see text] is a commutative finite ring and (Ri, 𝔪i) is a local ring, for i = 1, …, n, then [Formula: see text], where Fi = Ri/𝔪i, for i = 1, …, n. In this paper, we prove that if R is a commutative ring (not necessarily finite) and R is not a field, then ω(𝔍R) = max 𝔪∈ Max (R) |𝔪| and using this we show that the aforementioned conjecture holds.

2012 ◽  
Vol 12 (03) ◽  
pp. 1250179 ◽  
Author(s):  
A. AZIMI ◽  
A. ERFANIAN ◽  
M. FARROKHI D. G.

Let R be a commutative ring with nonzero identity. Then the Jacobson graph of R, denoted by 𝔍R, is defined as a graph with vertex set R\J(R) such that two distinct vertices x and y are adjacent if and only if 1 - xy is not a unit of R. We obtain some graph theoretical properties of 𝔍R including its connectivity, planarity and perfectness and we compute some of its numerical invariants, namely diameter, girth, dominating number, independence number and vertex chromatic number and give an estimate for its edge chromatic number.


2018 ◽  
Vol 17 (09) ◽  
pp. 1850168
Author(s):  
Atossa Parsapour ◽  
Khadijeh Ahmadjavaheri

Let [Formula: see text] be a commutative ring with nonzero identity and [Formula: see text] be the Jacobson radical of [Formula: see text]. The Jacobson graph of [Formula: see text], denoted by [Formula: see text], is a graph with vertex-set [Formula: see text], such that two distinct vertices [Formula: see text] and [Formula: see text] in [Formula: see text] are adjacent if and only if [Formula: see text] is not a unit of [Formula: see text]. The goal in this paper is to list every finite commutative ring [Formula: see text] with nonzero identity (up to isomorphism) such that the graph [Formula: see text] is projective.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050023
Author(s):  
S. Akbari ◽  
S. Khojasteh

Let [Formula: see text] be a commutative ring with unity. The cozero-divisor graph of [Formula: see text] denoted by [Formula: see text] is a graph with the vertex set [Formula: see text], where [Formula: see text] is the set of all nonzero and non-unit elements of [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] and [Formula: see text]. Let [Formula: see text] and [Formula: see text] denote the clique number and the chromatic number of [Formula: see text], respectively. In this paper, we prove that if [Formula: see text] is a finite commutative ring, then [Formula: see text] is perfect. Also, we prove that if [Formula: see text] is a commutative Artinian non-local ring and [Formula: see text] is finite, then [Formula: see text]. For Artinian local ring, we obtain an upper bound for the chromatic number of cozero-divisor graph. Among other results, we prove that if [Formula: see text] is a commutative ring, then [Formula: see text] is a complete bipartite graph if and only if [Formula: see text], where [Formula: see text] and [Formula: see text] are fields. Moreover, we present some results on the complete [Formula: see text]-partite cozero-divisor graphs.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).


2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


2014 ◽  
Vol 21 (02) ◽  
pp. 249-256 ◽  
Author(s):  
G. Aalipour ◽  
S. Akbari ◽  
M. Behboodi ◽  
R. Nikandish ◽  
M. J. Nikmehr ◽  
...  

Let R be a commutative ring and 𝔸(R) be the set of ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸(R)\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). Here, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. It is shown that if R is an Artinian ring and ω (𝔸𝔾(R)) = 2, then R is Gorenstein. Also, we investigate commutative rings whose annihilating-ideal graphs are complete or bipartite.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950006 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
S. Anukumar Kathirvel

Let [Formula: see text] be a finite commutative ring with nonzero identity and [Formula: see text] be the set of all units of [Formula: see text] The graph [Formula: see text] is the simple undirected graph with vertex set [Formula: see text] in which two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if there exists a unit element [Formula: see text] in [Formula: see text] such that [Formula: see text] is a unit in [Formula: see text] In this paper, we obtain degree of all vertices in [Formula: see text] and in turn provide a necessary and sufficient condition for [Formula: see text] to be Eulerian. Also, we give a necessary and sufficient condition for the complement [Formula: see text] to be Eulerian, Hamiltonian and planar.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750058 ◽  
Author(s):  
K. Selvakumar ◽  
P. Subbulakshmi ◽  
Jafar Amjadi

Let [Formula: see text] be a commutative ring with identity. We consider a simple graph associated with [Formula: see text], denoted by [Formula: see text], whose vertex set is the set of all non-trivial ideals of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent whenever [Formula: see text] or [Formula: see text]. In this paper, we characterize the commutative Artinian non-local ring [Formula: see text] for which [Formula: see text] has genus one and crosscap one.


2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Ch. Eslahchi ◽  
A. M. Rahimi

The concept of the zero-divisor graph of a commutative ring has been studied by many authors, and thek-zero-divisor hypergraph of a commutative ring is a nice abstraction of this concept. Though some of the proofs in this paper are long and detailed, any reader familiar with zero-divisors will be able to read through the exposition and find many of the results quite interesting. LetRbe a commutative ring andkan integer strictly larger than2. Ak-uniform hypergraphHk(R)with the vertex setZ(R,k), the set of allk-zero-divisors inR, is associated toR, where eachk-subset ofZ(R,k)that satisfies thek-zero-divisor condition is an edge inHk(R). It is shown that ifRhas two prime idealsP1andP2with zero their only common point, thenHk(R)is a bipartite (2-colorable) hypergraph with partition setsP1−Z′andP2−Z′, whereZ′is the set of all zero divisors ofRwhich are notk-zero-divisors inR. IfRhas a nonzero nilpotent element, then a lower bound for the clique number ofH3(R)is found. Also, we have shown thatH3(R)is connected with diameter at most 4 wheneverx2≠0for all3-zero-divisorsxofR. Finally, it is shown that for any finite nonlocal ringR, the hypergraphH3(R)is complete if and only ifRis isomorphic toZ2×Z2×Z2.


Sign in / Sign up

Export Citation Format

Share Document