zero divisors
Recently Published Documents


TOTAL DOCUMENTS

383
(FIVE YEARS 75)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Hafiz Muahmmad Afzal Siddiqui ◽  
Ammar Mujahid ◽  
Muhammad Ahsan Binyamin ◽  
Muhammad Faisal Nadeem

Given a finite commutative unital ring S having some non-zero elements x ,   y such that x . y = 0 , the elements of S that possess such property are called the zero divisors, denoted by Z S . We can associate a graph to S with the help of zero-divisor set Z S , denoted by ζ S (called the zero-divisor graph), to study the algebraic properties of the ring S . In this research work, we aim to produce some general bounds for the edge version of metric dimension regarding zero-divisor graphs of S . To do so, we will discuss the zero-divisor graphs for the ring of integers ℤ m modulo m , some quotient polynomial rings, and the ring of Gaussian integers ℤ m i modulo m . Then, we prove the general result for the bounds of edge metric dimension of zero-divisor graphs in terms of maximum degree and diameter of ζ S . In the end, we provide the commutative rings with the same metric dimension, edge metric dimension, and upper dimension.


Author(s):  
S. Karthik ◽  
S. N. Meera ◽  
K. Selvakumar

Let [Formula: see text] be a commutative ring with identity and [Formula: see text] be the set of all nonzero zero-divisors of [Formula: see text]. The annihilator graph of commutative ring [Formula: see text] is the simple undirected graph [Formula: see text] with vertices [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. The essential graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] is an essential ideal. In this paper, we classify all finite commutative rings with identity whose annihilator graph and essential graph have crosscap two.


2021 ◽  
Vol 28 (04) ◽  
pp. 655-672
Author(s):  
K. Selvakumar ◽  
M. Subajini

Let [Formula: see text] be a commutative ring, [Formula: see text] an ideal of [Formula: see text] and [Formula: see text] a fixed integer. The ideal-based [Formula: see text]-zero-divisor hypergraph [Formula: see text] of [Formula: see text] has vertex set [Formula: see text], the set of all ideal-based [Formula: see text]-zero-divisors of [Formula: see text], and for distinct elements [Formula: see text] in [Formula: see text], the set [Formula: see text] is an edge in [Formula: see text] if and only if [Formula: see text] and the product of the elements of any [Formula: see text]-subset of [Formula: see text] is not in [Formula: see text]. In this paper, we show that [Formula: see text] is connected with diameter at most 4 provided that [Formula: see text] for all ideal-based 3-zero-divisor hypergraphs. Moreover, we find the chromatic number of [Formula: see text] when [Formula: see text] is a product of finite fields. Finally, we find some necessary conditions for a finite ring [Formula: see text] and a nonzero ideal [Formula: see text] of [Formula: see text] to have [Formula: see text] planar.


Author(s):  
Hezron Saka Were ◽  
Maurice Oduor Owino ◽  
Moses Ndiritu Gichuki

In this paper, R is considered a completely primary finite ring and Z(R) is its subset of all zero divisors (including zero), forming a unique maximal ideal. We give a construction of R whose subset of zero divisors Z(R) satisfies the conditions (Z(R))5 = (0); (Z(R))4 ̸= (0) and determine the structures of the unit groups of R for all its characteristics.


2021 ◽  
Author(s):  
Grigore Călugăreanu ◽  
Horia F. Pop

Column-row products have zero determinant over any commutative ring. In this paper we discuss the converse. For domains, we show that this yields a characterization of pre-Schreier rings, and for rings with zero divisors we show that reduced pre-Schreier rings have this property.Finally, for the rings of integers modulo n, we determine the 2x2 matrices which are (or not) full and their numbers.


2021 ◽  
Vol 8 (23) ◽  
pp. 281-296
Author(s):  
Fabrizio Colombo ◽  
David Kimsey ◽  
Stefano Pinton ◽  
Irene Sabadini

In this paper we define a new function theory of slice monogenic functions of a Clifford variable using the S S -functional calculus for Clifford numbers. Previous attempts of such a function theory were obstructed by the fact that Clifford algebras, of sufficiently high order, have zero divisors. The fact that Clifford algebras have zero divisors does not pose any difficulty whatsoever with respect to our approach. The new class of functions introduced in this paper will be called the class of slice monogenic Clifford functions to stress the fact that they are defined on open sets of the Clifford algebra R n \mathbb {R}_n . The methodology can be generalized, for example, to handle the case of noncommuting matrix variables.


2021 ◽  
Vol 225 (9) ◽  
pp. 106692
Author(s):  
Federico Campanini ◽  
Carmelo Antonio Finocchiaro
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document