scholarly journals Universal central extensions of Lie–Rinehart algebras

2018 ◽  
Vol 17 (07) ◽  
pp. 1850134 ◽  
Author(s):  
J. L. Castiglioni ◽  
X. García-Martínez ◽  
M. Ladra

In this paper, we study the universal central extension of a Lie–Rinehart algebra and we give a description of it. Then we study the lifting of automorphisms and derivations to central extensions. We also give a definition of a non-abelian tensor product in Lie–Rinehart algebras based on the construction of Ellis of non-abelian tensor product of Lie algebras. We relate this non-abelian tensor product to the universal central extension.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Revaz Kurdiani

AbstractThe present paper deals with the Lie triple systems via Leibniz algebras. A perfect Lie algebra as a perfect Leibniz algebra and as a perfect Lie triple system is considered and the appropriate universal central extensions are studied. Using properties of Leibniz algebras, it is shown that the Lie triple system universal central extension is either the universal central extension of the Leibniz algebra or the universal central extension of the Lie algebra.


2012 ◽  
Vol 2013 (682) ◽  
pp. 129-139
Author(s):  
Bas Janssens ◽  
Christoph Wockel

Abstract. We show that the canonical central extension of the group of sections of a Lie group bundle over a compact manifold, constructed by Neeb and Wockel (2009), is universal. In doing so, we prove universality of the corresponding central extension of Lie algebras in a slightly more general setting.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1737
Author(s):  
Mariia Myronova ◽  
Jiří Patera ◽  
Marzena Szajewska

The invariants of finite-dimensional representations of simple Lie algebras, such as even-degree indices and anomaly numbers, are considered in the context of the non-crystallographic finite reflection groups H2, H3 and H4. Using a representation-orbit replacement, the definitions and properties of the indices are formulated for individual orbits of the examined groups. The indices of orders two and four of the tensor product of k orbits are determined. Using the branching rules for the non-crystallographic Coxeter groups, the embedding index is defined similarly to the Dynkin index of a representation. Moreover, since the definition of the indices can be applied to any orbit of non-crystallographic type, the algorithm allowing to search for the orbits of smaller radii contained within any considered one is presented for the Coxeter groups H2 and H3. The geometrical structures of nested polytopes are exemplified.


1991 ◽  
Vol 43 (3) ◽  
pp. 580-616 ◽  
Author(s):  
Helmut Strade

AbstractFor all algebras G, such that is an algebra mentioned in the title, the modules of dimension ≤ p2 are determined. The module homomorphisms from the tensor product of these modules into a third module of the same type are described. We also give the central extensions of the algebras .


2014 ◽  
Vol 16 (03) ◽  
pp. 1350047 ◽  
Author(s):  
Ben Cox ◽  
Xiangqian Guo ◽  
Rencai Lu ◽  
Kaiming Zhao

In this paper we introduce and study n-point Virasoro algebras, [Formula: see text], which are natural generalizations of the classical Virasoro algebra and have as quotients multipoint genus zero Krichever–Novikov type algebras. We determine necessary and sufficient conditions for the latter two such Lie algebras to be isomorphic. Moreover we determine their automorphisms, their derivation algebras, their universal central extensions, and some other properties. The list of automorphism groups that occur is Cn, Dn, A4, S4 and A5. We also construct a large class of modules which we call modules of densities, and determine necessary and sufficient conditions for them to be irreducible.


Sign in / Sign up

Export Citation Format

Share Document