Optimal open-loop strategies in a debt management problem
The paper studies optimal strategies for a borrower who needs to repay his debt, in an infinite time horizon. An instantaneous bankruptcy risk is present, which increases with the size of the debt. This induces a pool of risk-neutral lenders to charge a higher interest rate, to compensate for the possible loss of part of their investment. Solutions are interpreted as Stackelberg equilibria, where the borrower announces his repayment strategy [Formula: see text] at all future times, and lenders adjust the interest rate accordingly. This yields a highly non-standard problem of optimal control, where the instantaneous dynamics depend on the entire future evolution of the system. Our analysis shows the existence of optimal open-loop controls, deriving necessary conditions for optimality and characterizing possible asymptotic limits as [Formula: see text].