Journal of Applied Mathematics and Stochastic Analysis
Latest Publications


TOTAL DOCUMENTS

697
(FIVE YEARS 0)

H-INDEX

23
(FIVE YEARS 0)

Published By Hindawi Limited

1687-2177, 1048-9533

2009 ◽  
Vol 2009 ◽  
pp. 1-13
Author(s):  
A. L. Marhoune ◽  
F. Lakhal

We study a boundary value problem with multivariables integral type condition for a class of parabolic equations. We prove the existence, uniqueness, and continuous dependence of the solution upon the data in the functional wieghted Sobolev spaces. Results are obtained by using a functional analysis method based on two-sided a priori estimates and on the density of the range of the linear operator generated by the considered problem.


2009 ◽  
Vol 2009 ◽  
pp. 1-16 ◽  
Author(s):  
Bernard Wong

We investigate the arbitrage-free property of stock price models where the local martingale component is based on an ergodic diffusion with a specified stationary distribution. These models are particularly useful for long horizon asset-liability management as they allow the modelling of long term stock returns with heavy tail ergodic diffusions, with tractable, time homogeneous dynamics, and which moreover admit a complete financial market, leading to unique pricing and hedging strategies. Unfortunately the standard specifications of these models in literature admit arbitrage opportunities. We investigate in detail the features of the existing model specifications which create these arbitrage opportunities and consequently construct a modification that is arbitrage free.


2009 ◽  
Vol 2009 ◽  
pp. 1-33 ◽  
Author(s):  
Tomasz R. Bielecki ◽  
Stéphane Crépey ◽  
Monique Jeanblanc ◽  
Marek Rutkowski

The valuation and hedging of defaultable game options is studied in a hazard process model of credit risk. A convenient pricing formula with respect to a reference filteration is derived. A connection of arbitrage prices with a suitable notion of hedging is obtained. The main result shows that the arbitrage prices are the minimal superhedging prices with sigma martingale cost under a risk neutral measure.


2009 ◽  
Vol 2009 ◽  
pp. 1-14 ◽  
Author(s):  
Pierpaolo Ferrante

We consider the interloss times in the Erlang Loss System. Here we present the explicit form of the probability density function of the time spent between two consecutive losses in the model. This density function solves a Cauchy problem for the second-order differential equations, which was used to evaluate the corresponding laplace transform. Finally the connection between the Erlang's loss rate and the evaluated probability density function is showed.


2009 ◽  
Vol 2009 ◽  
pp. 1-26
Author(s):  
Jin Ma ◽  
Yusun Wang

We study a new type of reflected backward stochastic differential equations (RBSDEs), where the reflecting process enters the drift in a nonlinear manner. This type of the reflected BSDEs is based on a variance of the Skorohod problem studied recently by Bank and El Karoui (2004), and is hence named the “Variant Reflected BSDEs” (VRBSDE) in this paper. The special nature of the Variant Skorohod problem leads to a hidden forward-backward feature of the BSDE, and as a consequence this type of BSDE cannot be treated in a usual way. We shall prove that in a small-time duration most of the well-posedness, comparison, and stability results are still valid, although some extra conditions on the boundary process are needed. We will also provide some possible applications where the VRBSDE can be potentially useful. These applications show that the VRBSDE could become a novel tool for some problems in finance and optimal stopping problems where no existing methods can be easily applicable.


2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
Yonghong Yao ◽  
Muhammad Aslam Noor ◽  
Syed Tauseef Mohyud-Din

Let H be a real Hilbert space, let S, T be two nonexpansive mappings such that F(S)∩F(T)≠∅, let f be a contractive mapping, and let A be a strongly positive linear bounded operator on H. In this paper, we suggest and consider the strong converegence analysis of a new two-step iterative algorithms for finding the approximate solution of two nonexpansive mappings as xn+1=βnxn+(1−βn)Syn, yn=αnγf(xn)+(I−αnA)Txn, n≥0 is a real number and {αn}, {βn} are two sequences in (0,1) satisfying the following control conditions: (C1) lim⁡n→∞ αn=0, (C3) 0<lim⁡inf⁡n→∞ βn≤lim⁡sup⁡n→∞ βn<1, then ‖xn+1−xn‖→0. We also discuss several special cases of this iterative algorithm.


2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
K. Farahmand ◽  
M. Sambandham

The expected number of real zeros of an algebraic polynomial with random coefficient is known. The distribution of the coefficients is often assumed to be identical albeit allowed to have different classes of distributions. For the nonidentical case, there has been much interest where the variance of the th coefficient is . It is shown that this class of polynomials has significantly more zeros than the classical algebraic polynomials with identical coefficients. However, in the case of nonidentically distributed coefficients it is analytically necessary to assume that the means of coefficients are zero. In this work we study a case when the moments of the coefficients have both binomial and geometric progression elements. That is we assume and . We show how the above expected number of real zeros is dependent on values of and in various cases.


2009 ◽  
Vol 2009 ◽  
pp. 1-18
Author(s):  
Z. Kamont ◽  
K. Kropielnicka

We give a theorem on implicit difference functional inequalities generated by mixed problems for nonlinear systems of first-order partial differential functional equations. We apply this result in the investigations of the stability of difference methods. Classical solutions of mixed problems are approximated in the paper by solutions of suitable implicit difference schemes. The proof of the convergence of difference method is based on comparison technique, and the result on difference functional inequalities is used. Numerical examples are presented.


2009 ◽  
Vol 2009 ◽  
pp. 1-37
Author(s):  
Mou-Hsiung Chang ◽  
Roger K. Youree

This paper considers the pricing of a European option using a -market in which the stock price and the asset in the riskless bank account both have hereditary price structures described by the authors of this paper (1999). Under the smoothness assumption of the payoff function, it is shown that the infinite dimensional Black-Scholes equation possesses a unique classical solution. A spectral approximation scheme is developed using the Fourier series expansion in the space for the Black-Scholes equation. It is also shown that the th approximant resembles the classical Black-Scholes equation in finite dimensions.


2008 ◽  
Vol 2008 ◽  
pp. 1-11
Author(s):  
Filomena Cianciaruso ◽  
Giuseppe Marino ◽  
Luigi Muglia ◽  
Haiyun Zhou

We define a viscosity method for continuous pseudocontractive mappings defined on closed and convex subsets of reflexive Banach spaces with a uniformly Gâteaux differentiable norm. We prove the convergence of these schemes improving the main theorems in the work by Y. Yao et al. (2007) and H. Zhou (2008).


Sign in / Sign up

Export Citation Format

Share Document