scholarly journals From Boltzmann to incompressible Navier–Stokes in Sobolev spaces with polynomial weight

2018 ◽  
Vol 17 (01) ◽  
pp. 85-116 ◽  
Author(s):  
Marc Briant ◽  
Sara Merino-Aceituno ◽  
Clément Mouhot

We study the Boltzmann equation on the [Formula: see text]-dimensional torus in a perturbative setting around a global equilibrium under the Navier–Stokes linearization. We use a recent functional analysis breakthrough to prove that the linear part of the equation generates a [Formula: see text]-semigroup with exponential decay in Lebesgue and Sobolev spaces with polynomial weight, independently of the Knudsen number. Finally, we prove well-posedness of the Cauchy problem for the nonlinear Boltzmann equation in perturbative setting and an exponential decay for the perturbed Boltzmann equation, uniformly in the Knudsen number, in Sobolev spaces with polynomial weight. The polynomial weight is almost optimal. Furthermore, this result only requires derivatives in the space variable and allows to connect solutions to the incompressible Navier–Stokes equations in these spaces.

2017 ◽  
Vol 102 ◽  
pp. 218-228 ◽  
Author(s):  
Li Peng ◽  
Yong Zhou ◽  
Bashir Ahmad ◽  
Ahmed Alsaedi

Sign in / Sign up

Export Citation Format

Share Document