TRANSPORT PROPERTIES OF 2D ELECTRON GAS IN AN n-InGaAs/GaAs DQW IN A VICINITY OF LOW MAGNETIC-FIELD-INDUCED HALL INSULATOR–QUANTUM HALL LIQUID TRANSITION
2007 ◽
Vol 06
(03n04)
◽
pp. 173-177
Keyword(s):
The resistivity (ρ) of low mobility dilute 2D electron gas in an n- InGaAs / GaAs double quantum well (DQW) exhibits the monotonic "insulating-like" temperature dependence (dρ/dT < 0) at T = 1.8–70 K in zero magnetic field. This temperature interval corresponds to a ballistic regime (kBTτ/ħ > 0.1–3.5) for our samples, and the electron density is on an "insulating" side of the so-called B = 0 2D metal–insulator transition. We show that the observed features of localization and Landau quantization in a vicinity of the low magnetic-field-induced insulator–quantum Hall liquid transition is due to the σxy(T) anomalous T-dependence.
Keyword(s):
Keyword(s):
1990 ◽
Vol 64
(15)
◽
pp. 1793-1796
◽
Keyword(s):
Keyword(s):
Keyword(s):