Abstract
Electron-electron interactions can be useful for realizing new nontrivial topological phases of matter. Here, we show by means of a tight-binding model and mean field theory how electron-electron interactions can lead to a topological phase transition. By externally adding or removing electrons from the system a band inversion between two bands with dierent parity is induced. This leads to a topological nontrivial phase if spin-orbit coupling is present. Besides the toy-model illustrating this mechanism, we also propose SmB6 as a possible playground for experimentally realizing a topological phase transition by external tuning.