Effects of Temperature and Particles Concentration on the Dynamic Viscosity of Graphene-NiO/Coconut Oil Hybrid Nanofluid: Experimental Study

2019 ◽  
Vol 19 (03) ◽  
pp. 1950016 ◽  
Author(s):  
N. Senniangiri ◽  
J. Bensam Raj ◽  
J. Sunil

In practice, lubricants are used to minimize the friction and wear of frictional surfaces. The disposal of mineral-based lubricating oil possesses environmental issues and forced the development of bio-degradable lubricating agents. The simultaneous mono-dispersion of metallic and metal oxides nanomaterials into lubricating agents may concurrently reveal superior thermo-physical and rheological characteristics. This paper proposes an experimental and theoretical investigation on the dynamic viscosity enhancement of flat platelets textured Graphene/NiO-coconut oil hybrid nanofluids. The results reveal that the dynamic viscosity enhancement of hybrid nanofluids increases with nanomaterial concentration and decreases with temperature. The squat hybrid nanomaterial concentration has less collusion probability and dynamic contact between the mono-dispersed hybrid nanomaterials as it has enough interfacing gaps to conquer superficial surface energy. The high nanomaterial concentration revamps the formation of lamellar-composite agglomerated particles and enhances the dynamic viscosity of base fluid. Further, a theoretical correlation is recommended to estimate the dynamic viscosity of hybrid nanofluid with minimum margin of deviation using artificial neural network (ANN).

2021 ◽  
Vol 9 ◽  
Author(s):  
Adeola O. Borode ◽  
Noor A. Ahmed ◽  
Peter A. Olubambi ◽  
Mohsen Sharifpur ◽  
Josua P. Meyer

This paper investigates the thermophysical properties and heat transfer performance of graphene nanoplatelet (GNP) and alumina hybrid nanofluids at different mixing ratios. The electrical conductivity and viscosity of the nanofluids were obtained at temperatures between 15–55°C. The thermal conductivity was measured at temperatures between 20–40°C. The natural convection properties, including Nusselt number, Rayleigh number, and heat transfer coefficient, were experimentally obtained at different temperature gradients (20, 25, 30, and 35°C) in a rectangular cavity. The Mouromtseff number was used to theoretically estimate all the nanofluids’ forced convective performance at temperatures between 20–40°C. The results indicated that the thermal conductivity and viscosity of water are increased with the hybrid nanomaterial. On the other hand, the viscosity and thermal conductivity of the hybrid nanofluids are lesser than that of mono-GNP nanofluids. Notwithstanding, of all the hybrid nanofluids, GNP-alumina hybrid nanofluid with a mixing ratio of 50:50 and 75:25 were found to have the highest thermal conductivity and viscosity, enhancing thermal conductivity by 4.23% and increasing viscosity by 15.79%, compared to water. Further, the addition of the hybrid nanomaterials improved the natural convective performance of water while it deteriorates with mono-GNP. The maximum augmentation of 6.44 and 10.48% were obtained for Nuaverage and haverage of GNP-Alumina (50:50) hybrid nanofluid compared to water, respectively. This study shows that hybrid nanofluids are more effective for heat transfer than water and mono-GNP nanofluid.


2020 ◽  
Vol 51 (15) ◽  
pp. 1351-1362
Author(s):  
Davood Semiromi Toghraie ◽  
Nima Sina ◽  
Milad Mozafarifard ◽  
As'ad Alizadeh ◽  
Farid Soltani ◽  
...  

Jurnal METTEK ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Dedison Gasni ◽  
KM Abdul Razak ◽  
Ahmad Ridwan ◽  
Muhammad Arif

Penelitian ini bertujuan untuk mengetahui efek dari penambahan minyak kelapa dan sawit terhadap sifat fisik dan tribologi pelumas SAE 40. Vegetabel oil, seperti; minyak kelapa dan sawit, memiliki nilai viskositas indek yang tinggi dan sifat pelumasan yang baik terutama didaerah boundary lubrication jika dibandingkan dengan mineral oil (SAE 40). Hal ini disebabkan karena vegetabel oil memiliki kandungan fatty acids yang tidak dimiliki oleh mineral oil. Keunggulan lain dari minyak kelapa dan sawit adanya sifat yang ramah lingkungan karena mudah terurai di alam dan dapat diperbaharui. Pada penelitian ini sifat yang baik dari minyak kelapa dan sawit ini akan dimanfaatkan sebagai zat aditif pada minyak pelumas SAE 40. Pengujian dilakukan terhadap sifat fisik dan tribology dengan penambahan 5%, 10%, 15%, dan 20% berat dari minyak kelapa dan sawit ke dalam minyak pelumas SAE 40. Pengujian sifat fisik terdiri dari pengukuran viskositas pada temperatur 400C dan 1000C dan viskositas index. Pengujian sifat tribologi untuk menentukan keausan dan koefisien gesek berdasarkan ASTM G99 dengan menggunakan alat uji pin on disk. Dari hasil pengujian diperoleh bahwa dengan penambahan minyak kelapa dan sawit kedalam minyak pelumas SAE 40 terjadi peningkatan viskositas indeks. Peningkatan viskositas indeks sebanyak  17% dengan penambahan 20% minyak sawit. Terjadi perubahan sifat tribologi dengan penambahan minyak sawit, berupa penurunan keausan dan nilai koefisien gesek dibandingkan dengan penambahan minyak kelapa. This study aims to determine the effect of coconut and palm oils as additives to physical and tribological properties of SAE 40 lubricating oil . Vegetable oils, such as; coconut oil and palm oil, have high viscosity index and good lubrication properties, especially in boundary lubrication compared to mineral oil. This is due to vegetable oil having fatty acids that are not owned by mineral oil. The advantages of coconut oil and palm oil are environmentally friendly properties because they are biodegradable and renewable. In this study, the good properties of coconut and palm oils will be used as additives in SAE 40 lubricating oil. Tests are carried out on the physical and tribological properties with the addition of 5%, 10%, 15%, and 20% by weight of coconut and palm oils into SAE 40 lubricating oil. Physical properties testing consists of measuring viscosity at temperatures of 400C and 1000C and viscosity index. The tribological test is to determine wear and coefficient of friction based on ASTM G99 using a pin on disc test equipment. From the test results,  it was found that coconut and palm oils as additives into SAE 40 lubricating oil could increase in viscosity index. The increase of  the viscosity index was 17% by adding 20% of palm oil. There was a change of tribological properties in the form of decreasing on the wear and the coefficient of friction with the addition of palm oil compare to addition of coconut oil.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1107
Author(s):  
Xiangcheng You ◽  
Shiyuan Li

This paper studies the convective heat transfer of a hybrid nanofluid in the inclined channel, whose walls are both heated by the uniform heat flux. The governing ordinary differential equations are made nondimensional and solved analytically, in which explicit distributions of velocity, temperature and pressure are obtained. The effects of flow reversal, wall skin friction and Nusselt number with the hybrid nanofluid depend on the nanoparticle volume fractions and pressure parameters. The obtained results indicate that the nanoparticle volume fractions play a key role in delaying the occurrence of the flow reversal. The hybrid nanofluids hold more delayed range than conventional nanofluids, which is about 2.5 times that of nanofluids. The calculations have been compared with the base fluid, nanofluid and two kinds of hybrid models (type II and type III). The hybrid model of type III is useful and simplified in that it omits the nonlinear terms due to the interaction of different nanoparticle volumetric fractions, with the relative error less than 3%. More results are discussed in the results section below.


2014 ◽  
Vol 592-594 ◽  
pp. 922-926 ◽  
Author(s):  
Devasenan Madhesh ◽  
S. Kalaiselvam

Analysis of heat transfer behaviour of hybrid nanofluid (HyNF) flow through the tubular heat exchanger was experimentally investigated. In this analysis the effects of thermal characteristics of forced convection, Nusselt number, Peclet number, and overall heat transfer coefficient were investigated.The nanofluid was prepared by dispersing the copper-titania hybrid nanocomposite (HyNC) in the water. The experiments were performed for various nanoparticle volume concentrations addition in the base fluid from the range of 0.1% to 1.0%. The experimental results show that the overall heat transfer coefficient was found to increases maximum by 30.4%, up to 0.7% volume concentration of HyNC.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Solomon O. Giwa ◽  
Mohsen Sharifpur ◽  
Mohammad H. Ahmadi ◽  
S. M. Sohel Murshed ◽  
Josua P. Meyer

The superiority of nanofluid over conventional working fluid has been well researched and proven. Newest on the horizon is the hybrid nanofluid currently being examined due to its improved thermal properties. This paper examined the viscosity and electrical conductivity of deionized water (DIW)-based multiwalled carbon nanotube (MWCNT)-Fe2O3 (20:80) nanofluids at temperatures and volume concentrations ranging from 15 °C to 55 °C and 0.1–1.5%, respectively. The morphology of the suspended hybrid nanofluids was characterized using a transmission electron microscope, and the stability was monitored using visual inspection, UV–visible, and viscosity-checking techniques. With the aid of a viscometer and electrical conductivity meter, the viscosity and electrical conductivity of the hybrid nanofluids were determined, respectively. The MWCNT-Fe2O3/DIW nanofluids were found to be stable and well suspended. Both the electrical conductivity and viscosity of the hybrid nanofluids were augmented with respect to increasing volume concentration. In contrast, the temperature rise was noticed to diminish the viscosity of the nanofluids, but it enhanced electrical conductivity. Maximum increments of 35.7% and 1676.4% were obtained for the viscosity and electrical conductivity of the hybrid nanofluids, respectively, when compared with the base fluid. The obtained results were observed to agree with previous studies in the literature. After fitting the obtained experimental data, high accuracy was achieved with the formulated correlations for estimating the electrical conductivity and viscosity. The examined hybrid nanofluid was noticed to possess a lesser viscosity in comparison with the mono-particle nanofluid of Fe2O3/water, which was good for engineering applications as the pumping power would be reduced.


Author(s):  
Anwar Ilmar RAMADHAN ◽  
Wan Hamzah AZMI ◽  
Rizalman MAMAT

In recent years, research has focused on enhancing the thermo-physical properties of a single component nanofluid. Therefore, hybrid or composite nanofluids have been developed to improve heat transfer performance. The thermo-physical properties of the Al2O3-TiO2-SiO2 nanoparticles suspended in a base of water (W) and ethylene glycol (EG) at constant volume ratio of 60:40 and different volume concentrations were investigated. The experiment was conducted for the volume concentrations of 0.05, 0.1, 0.2, and 0.3% of Al2O3-TiO2-SiO2 nanofluids at different temperatures of 30, 40, 50, 60, and 70 °C. Thermal conductivity and dynamic viscosity measurements were carried out at temperatures ranging from 30 to 70 °C by using KD2 Pro Thermal Properties Analyzer and Brookfield LVDV III Ultra Rheometer, respectively. The highest thermal conductivity for tri-hybrid nanofluids was obtained at 0.3% volume concentration, and the maximum enhancement was increased up to 9% higher than the base fluid (EG/W). Tri-hybrid nanofluids with a volume concentration of 0.05% gave the lowest effective thermal conductivity of 4.8 % at 70 °C temperature. Meanwhile, the dynamic viscosity of the tri-hybrid nanofluids was influenced by volume concentration and temperature. Furthermore, tri-hybrid nanofluids behaved as a Newtonian fluid for volume concentrations from 0.05 to 3.0%. The properties enhancement ratio (PER) estimated that the tri-hybrid nanofluids will aid in heat transfer for all samples in the present. The new correlations for thermal conductivity and dynamic viscosity of tri-hybrid nanofluids were developed with minimum deviation. As a conclusion, the combination of the enhancement in thermal conductivity and dynamic viscosity for tri-hybrid at 0.3% volume concentration was found the optimum condition with more advantage for heat transfer than other concentrations.


2019 ◽  
Vol 390 ◽  
pp. 83-90 ◽  
Author(s):  
Sidra Aman ◽  
Syazwani Mohd Zokri ◽  
Zulkhibri Ismail ◽  
Mohd Zuki Salleh ◽  
Ilyas Khan

In this paper MHD flow of Casson hybrid nanofluids are investigated with Caputo time-fractional derivative. Alumina (Al) and copper (Cu) are used as nanoparticles in this study with heat, mass transfer and MHD flow over a vertical channel in a porous medium. The problem is modeled using Caputo fractional derivatives and thermophysical properties of hybrid nanoparticles. The influence of concerned parameters is investigated physically and graphically on the heat, concentration and flow. The effect of volume fraction on thermal conductivity of hybrid nanofluids is observed.


2019 ◽  
Vol 30 (8) ◽  
pp. 4083-4101 ◽  
Author(s):  
Aneela Bibi ◽  
Hang Xu ◽  
Qiang Sun ◽  
Ioan Pop ◽  
Qingkai Zhao

Purpose This study aims to carry out an analysis for flow and heat transfer of a new hybrid nanofluid over a vertical flat surface embedded in a saturated porous medium with anisotropic permeability at high Rayleigh number. Here the hybrid nanofluid is considered as the working fluid, with different kinds of small particles in nanoscale being suspended. Design/methodology/approach The generalized homogenous model is introduced to describe the behaviors of hybrid nanofluid. Within the framework of the boundary layer approximations, the governing equations embodying the conservation equations of total mass, momentum and thermal energy are reduced to a set of fully coupled ordinary differential equations via relevant scaling transformations. A flow stability analysis is performed to examine the behavior of convective heat energy. Accurate solutions are obtained by means of a very efficient homotopy-based package BVPh 2.0. Findings Results show that the linear correlations of physical quantities among the base fluid and its suspended nanoparticles are adequate to give accurate results for simulation of behaviors of hybrid nanofluids. Heat enhancement can be also fulfilled by hybrid nanofluids. A flow stability analysis suggests the heat-related power index m > −1/3 for satisfying the increasing behavior of convective heat energy. Originality/value Free convection of a hybrid nanofluid near a vertical flat surface embedded in a saturated porous medium with anisotropic permeability is investigated for the first time. The simplified hybrid nanofluid model is proposed for describing nanofluid behaviors. The results of this proposed approach agree well with those given by the traditional hybrid nanofluid model and experiment. It is expected that, by using different combinations of various kinds of nanoparticles, the new generation of heat transfer fluids can be fabricated, which possess similar thermal-physical properties as regular nanofluids but with lower cost.


Sign in / Sign up

Export Citation Format

Share Document