Effects of Temperature and Particles Concentration on the Dynamic Viscosity of Graphene-NiO/Coconut Oil Hybrid Nanofluid: Experimental Study
In practice, lubricants are used to minimize the friction and wear of frictional surfaces. The disposal of mineral-based lubricating oil possesses environmental issues and forced the development of bio-degradable lubricating agents. The simultaneous mono-dispersion of metallic and metal oxides nanomaterials into lubricating agents may concurrently reveal superior thermo-physical and rheological characteristics. This paper proposes an experimental and theoretical investigation on the dynamic viscosity enhancement of flat platelets textured Graphene/NiO-coconut oil hybrid nanofluids. The results reveal that the dynamic viscosity enhancement of hybrid nanofluids increases with nanomaterial concentration and decreases with temperature. The squat hybrid nanomaterial concentration has less collusion probability and dynamic contact between the mono-dispersed hybrid nanomaterials as it has enough interfacing gaps to conquer superficial surface energy. The high nanomaterial concentration revamps the formation of lamellar-composite agglomerated particles and enhances the dynamic viscosity of base fluid. Further, a theoretical correlation is recommended to estimate the dynamic viscosity of hybrid nanofluid with minimum margin of deviation using artificial neural network (ANN).