PREDICTION OF DYNAMIC VISCOSITY OF A NEW NON-NEWTONIAN HYBRID NANOFLUID USING EXPERIMENTAL AND ARTIFICIAL NEURAL NETWORK (ANN) METHODS

2020 ◽  
Vol 51 (15) ◽  
pp. 1351-1362
Author(s):  
Davood Semiromi Toghraie ◽  
Nima Sina ◽  
Milad Mozafarifard ◽  
As'ad Alizadeh ◽  
Farid Soltani ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Hemmat Esfe ◽  
S. Ali Eftekhari ◽  
Maboud Hekmatifar ◽  
Davood Toghraie

AbstractIn this study, the influence of different volume fractions ($$\phi$$ ϕ ) of nanoparticles and temperatures on the dynamic viscosity ($$\mu_{nf}$$ μ nf ) of MWCNT–Al2O3 (30–70%)/oil SAE40 hybrid nanofluid was examined by ANN. For this reason, the $$\mu_{nf}$$ μ nf was derived for 203 various experiments through a series of experimental tests, including a combination of 7 different $$\phi$$ ϕ , 6 various temperatures, and 5 shear rates. These data were then used to train an artificial neural network (ANN) to generalize results in the predefined ranges for two input parameters. For this reason, a feed-forward perceptron ANN with two inputs (T and $$\phi$$ ϕ ) and one output ($$\mu_{nf}$$ μ nf ) was used. The best topology of the ANN was determined by trial and error, and a two-layer with 10 neurons in the hidden layer with the tansig function had the best performance. A well-trained ANN is created using the trainbr algorithm and showed an MSE value of 4.3e−3 along 0.999 as a correlation coefficient for predicting $$\mu_{nf}$$ μ nf . The results show that an increase $$\phi$$ ϕ has a significant effect on $$\mu_{nf}$$ μ nf value. As $$\phi$$ ϕ increases, the viscosity of this nanofluid increases at all temperatures. On the other hand, with increasing temperature, the viscosity of this nanofluid decreases. Based on all of the diagrams presented for the trained ANNs, we can conclude that a well-trained ANN can be used as an approximating function for predicting the $$\mu_{nf}$$ μ nf .


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 38 (2A) ◽  
pp. 255-264
Author(s):  
Hanan A. R. Akkar ◽  
Sameem A. Salman

Computer vision and image processing are extremely necessary for medical pictures analysis. During this paper, a method of Bio-inspired Artificial Intelligent (AI) optimization supported by an artificial neural network (ANN) has been widely used to detect pictures of skin carcinoma. A Moth Flame Optimization (MFO) is utilized to educate the artificial neural network (ANN). A different feature is an extract to train the classifier. The comparison has been formed with the projected sample and two Artificial Intelligent optimizations, primarily based on classifier especially with, ANN-ACO (ANN training with Ant Colony Optimization (ACO)) and ANN-PSO (training ANN with Particle Swarm Optimization (PSO)). The results were assessed using a variety of overall performance measurements to measure indicators such as Average Rate of Detection (ARD), Average Mean Square error (AMSTR) obtained from training, Average Mean Square error (AMSTE) obtained for testing the trained network, the Average Effective Processing Time (AEPT) in seconds, and the Average Effective Iteration Number (AEIN). Experimental results clearly show the superiority of the proposed (ANN-MFO) model with different features.


Sign in / Sign up

Export Citation Format

Share Document