Practical one-step synthesis of multipartite entangled states on superconducting circuits

2019 ◽  
Vol 17 (07) ◽  
pp. 1950051
Author(s):  
Rui Tao ◽  
Xiao-Tao Mo ◽  
Zheng-Yuan Xue ◽  
Jian Zhou

Quantum entanglement is an important resource for quantum information processing tasks. However, realistic multipartite entangled state production is very difficult. In this paper, we propose an efficient single-step scheme for generating many body Greenberger–Horne–Zeilinger (GHZ) states on superconducting circuits by using a superconducting transmission-line resonator (TLR) interact with [Formula: see text] superconducting transmon qubits. The distinct merit of our proposal is that it does not require the qubit-resonator coupling strengths to be the same, which is usually impractical experimentally, and thus is one of the main reasons for entanglement generation infidelity in previous single-step schemes. The removing of the uniform interaction requirement is achieved by modulating the qubits splitting frequencies with ac microwave fields, which results in tunable individual qubit-resonator coupling strength, and thus effective uniform qubit–qubit interaction Hamiltonian can be obtained. Since microwave control is conventional nowadays, our proposal can be directly tested experimentally, which makes previous multipartite entangled states generation schemes more efficient.

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 611
Author(s):  
Seungbeom Chin ◽  
Yong-Su Kim ◽  
Sangmin Lee

The indistinguishability of quantum particles is widely used as a resource for the generation of entanglement. Linear quantum networks (LQNs), in which identical particles linearly evolve to arrive at multimode detectors, exploit the indistinguishability to generate various multipartite entangled states by the proper control of transformation operators. However, it is challenging to devise a suitable LQN that carries a specific entangled state or compute the possible entangled state in a given LQN as the particle and mode number increase. This research presents a mapping process of arbitrary LQNs to graphs, which provides a powerful tool for analyzing and designing LQNs to generate multipartite entanglement. We also introduce the perfect matching diagram (PM diagram), which is a refined directed graph that includes all the essential information on the entanglement generation by an LQN. The PM diagram furnishes rigorous criteria for the entanglement of an LQN and solid guidelines for designing suitable LQNs for the genuine entanglement. Based on the structure of PM diagrams, we compose LQNs for fundamental N-partite genuinely entangled states.


2019 ◽  
Vol 74 (6) ◽  
pp. 523-537
Author(s):  
Jyoti Faujdar ◽  
Atul Kumar

AbstractIn this article, we revisit the question of analysing the efficiencies of partially entangled states in three-qubit classes under real conditions. Our results show some interesting observations regarding the efficiencies and correlations of partially entangled states. Surprisingly, we find that the efficiencies of many three-qubit partially entangled states exceed that of maximally entangled three-qubit states under real noisy conditions and applications of weak measurements. Our analysis, therefore, suggests that the efficiencies of partially entangled states are much more robust to noise than those of maximally entangled states at least for the GHZ (Greenberger–Horne–Zeilinger) class states, for certain protocols; i.e. less correlations in the initially prepared state may also lead to better efficiency and hence one need not always consider starting with a maximally entangled state with maximum correlations between the qubits. For a set of partially entangled states, we find that the efficiency is optimal, independent of the decoherence and state parameters, if the value of weak measurement parameter is very large. For other values of the weak measurement parameter, the robustness of the states depends on the decoherence and state parameters. Moreover, we further show that one can achieve higher efficiencies in a protocol by using non-optimal weak measurement strengths instead of optimal weak measurement strengths.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jean-Claude Besse ◽  
Kevin Reuer ◽  
Michele C. Collodo ◽  
Arne Wulff ◽  
Lucien Wernli ◽  
...  

Abstract Sources of entangled electromagnetic radiation are a cornerstone in quantum information processing and offer unique opportunities for the study of quantum many-body physics in a controlled experimental setting. Generation of multi-mode entangled states of radiation with a large entanglement length, that is neither probabilistic nor restricted to generate specific types of states, remains challenging. Here, we demonstrate the fully deterministic generation of purely photonic entangled states such as the cluster, GHZ, and W state by sequentially emitting microwave photons from a controlled auxiliary system into a waveguide. We tomographically reconstruct the entire quantum many-body state for up to N = 4 photonic modes and infer the quantum state for even larger N from process tomography. We estimate that localizable entanglement persists over a distance of approximately ten photonic qubits.


2020 ◽  
Vol 117 (42) ◽  
pp. 26118-26122
Author(s):  
Jaroslav Kysela ◽  
Manuel Erhard ◽  
Armin Hochrainer ◽  
Mario Krenn ◽  
Anton Zeilinger

We present an experimental demonstration of a general entanglement-generation framework, where the form of the entangled state is independent of the physical process used to produce the particles. It is the indistinguishability of multiple generation processes and the geometry of the setup that give rise to the entanglement. Such a framework, termed entanglement by path identity, exhibits a high degree of customizability. We employ one class of such geometries to build a modular source of photon pairs that are high-dimensionally entangled in their orbital angular momentum. We demonstrate the creation of three-dimensionally entangled states and show how to incrementally increase the dimensionality of entanglement. The generated states retain their quality even in higher dimensions. In addition, the design of our source allows for its generalization to various degrees of freedom and even for the implementation in integrated compact devices. The concept of entanglement by path identity itself is a general scheme and allows for construction of sources producing also customized states of multiple photons. We therefore expect that future quantum technologies and fundamental tests of nature in higher dimensions will benefit from this approach.


2006 ◽  
Vol 04 (02) ◽  
pp. 307-323
Author(s):  
TAKASHI MIHARA

It is thought that the techniques operating entangled states are some of the principal ones in quantum information processing. Therefore, procedures constructing other types of entangled states from some entangled states are useful. In this paper, we first show methods that dynamically change the number of entangled qubits during communication. Next, we propose a sharing protocol called the anonymous entangled state sharing protocol. By using this protocol, a party's message can be split among unknown parties because the parties can share entangled states without knowing each other. Finally, we show protocols that can recover an original message and split it to other parties without revealing its shared messages.


Synthesis ◽  
2021 ◽  
Author(s):  
Sambasivarao Kotha ◽  
Sunil Pulletikurti ◽  
Ambareen Fatma ◽  
gopal dhangar ◽  
gonna somu Naidu

Here, we have demonstrated that the presence of a carbonyl group at C7 position is preventing the olefin metathesis of endo-norbornene derivatives due to the complexation of the metal alkylidene. Time-dependent NMR studies showed the presence of new proton signals in the metal alkylidene region, which indicate the formation of metal complex with the carbonyl group of the substrate. These observations were further proved by ESI-MS analysis. Whereas, computational studies provided that the catalyst was interacting with the C7 carbonyl group and aligned perpendicular to that of norbornene olefin. Later, these endo-keto norbornene derivatives were reduced to hydroxyl derivatives diastereoselectively. Ring-rearrangement metathesis (RRM) of these hydroxyl derivatives, produced the [6/5/6], and [5/6/5] carbo-tricyclic cores of the natural products in one step. Whereas the RRM of O-allyl derivatives, delivered the oxa-tricyclic compounds in a single step with excellent yields.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Yang ◽  
Soo-Hyon Phark ◽  
Yujeong Bae ◽  
Taner Esat ◽  
Philip Willke ◽  
...  

AbstractDesigning and characterizing the many-body behaviors of quantum materials represents a prominent challenge for understanding strongly correlated physics and quantum information processing. We constructed artificial quantum magnets on a surface by using spin-1/2 atoms in a scanning tunneling microscope (STM). These coupled spins feature strong quantum fluctuations due to antiferromagnetic exchange interactions between neighboring atoms. To characterize the resulting collective magnetic states and their energy levels, we performed electron spin resonance on individual atoms within each quantum magnet. This gives atomic-scale access to properties of the exotic quantum many-body states, such as a finite-size realization of a resonating valence bond state. The tunable atomic-scale magnetic field from the STM tip allows us to further characterize and engineer the quantum states. These results open a new avenue to designing and exploring quantum magnets at the atomic scale for applications in spintronics and quantum simulations.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1275
Author(s):  
Simone Scafati ◽  
Enza Pellegrino ◽  
Francesco de Paulis ◽  
Carlo Olivieri ◽  
James Drewniak ◽  
...  

The de-embedding of measurement fixtures is relevant for an accurate experimental characterization of radio frequency and digital electronic devices. The standard technique consists in removing the effects of the measurement fixtures by the calculation of the transfer scattering parameters (T-parameters) from the available measured (or simulated) global scattering parameters (S-parameters). The standard de-embedding is achieved by a multiple steps process, involving the S-to-T and subsequent T-to-S parameter conversion. In a typical measurement setup, two fixtures are usually placed before and after the device under test (DUT) allowing the connection of the device to the calibrated vector network analyzer coaxial ports. An alternative method is proposed in this paper: it is based on the newly developed multi-network cascading algorithm. The matrices involved in the fixture-DUT-fixture cascading gives rise to a non-linear set of equations that is in one step analytically solved in closed form, obtaining a unique solution. The method is shown to be effective and at least as accurate as the standard multi-step de-embedding one.


2016 ◽  
Vol 113 (28) ◽  
pp. 7722-7726 ◽  
Author(s):  
Gavin O. Jones ◽  
Alexander Yuen ◽  
Rudy J. Wojtecki ◽  
James L. Hedrick ◽  
Jeannette M. García

It is estimated that ∼2.7 million tons poly(carbonate)s (PCs) are produced annually worldwide. In 2008, retailers pulled products from store shelves after reports of bisphenol A (BPA) leaching from baby bottles, reusable drink bottles, and other retail products. Since PCs are not typically recycled, a need for the repurposing of the PC waste has arisen. We report the one-step synthesis of poly(aryl ether sulfone)s (PSUs) from the depolymerization of PCs and in situ polycondensation with bis(aryl fluorides) in the presence of carbonate salts. PSUs are high-performance engineering thermoplastics that are commonly used for reverse osmosis and water purification membranes, medical equipment, as well as high temperature applications. PSUs generated through this cascade approach were isolated in high purity and yield with the expected thermal properties and represent a procedure for direct conversion of one class of polymer to another in a single step. Computational investigations performed with density functional theory predict that the carbonate salt plays two important catalytic roles in this reaction: it decomposes the PCs by nucleophilic attack, and in the subsequent polyether formation process, it promotes the reaction of phenolate dimers formed in situ with the aryl fluorides present. We envision repurposing poly(BPA carbonate) for the production of value-added polymers.


2013 ◽  
Vol 380-384 ◽  
pp. 4849-4855
Author(s):  
Xing Kui Huang

Quantum entangled state theory is combined with quantum thermodynamics theory to build quantum entangled state heat engine. The basic nature of three-qubit Hxx chain, and all parameters of the orbit are analyzed. Energy model of quantum entangled state refrigerator in working process is taken as as a theoretical basis to construct three qubits Hxx chain refrigerator based on quantum entangled states. The working nature of the new quantum entangled state refrigerator under different field strength is studied. Compaired with two-qubit Hxxx chain refrigerator based on quantum entangled states and mapping analysis, the working efficiency of three qubits Hxx chain refrigerator based on quantum entangled states is much higher when the field strength is not zero and its working state is more stable.


Sign in / Sign up

Export Citation Format

Share Document