Mathematical framework for describing multipartite entanglement in terms of rows or columns of coefficient matrices
In this paper, we develop a mathematical framework for describing entanglement quantitatively and qualitatively for multipartite qudit states in terms of rows or columns of coefficient matrices. More specifically, we propose an entanglement measure and separability criteria based on rows or columns of coefficient matrices. This entanglement measure has an explicit mathematical expression by means of exterior products of all pairs of rows or columns in coefficient matrices. It is introduced via our result that the [Formula: see text]-concurrence coincides with the entanglement measure based on two-by-two minors of coefficient matrices. Depending on our entanglement measure, we obtain the separability criteria and maximal entanglement criteria in terms of rows or columns of coefficient matrices. Our conclusions show that just like every two-by-two minor in a coefficient matrix of a multipartite pure state, every pair of rows or columns can also exhibit its entanglement properties, and thus can be viewed as its smallest entanglement contribution unit too. The great merit of our entanglement measure and separability criteria is two-fold. First, they are very practical and convenient for computation compared to other methods. Second, they have clear geometric interpretations.