Abstract
We classify four qubit states under SLOCC operations, that is, we classify the orbits of the group SL(2,C)^4 on the Hilbert space H_4 = (C^2)^{\otimes 4}. We approach the classification by realising this representation as a symmetric space of maximal rank. We first describe general methods for classifying the orbits of such a space. We then apply these methods to obtain the orbits in our special case, resulting in a complete and irredundant classification of SL(2,C)^4-orbits on H_4. It follows that an element of H_4 is conjugate to an element of precisely 87 classes of elements. Each of these classes either consists of one element or of a parametrised family of elements, and the elements in the same class all have equal stabiliser in SL(2,C)^4. We also present a complete and irredundant classification of elements and stabilisers up to the action of the semidirect product Sym_4\ltimes\SL(2,C)^4 where Sym_4 permutes the four tensor factors of H_4.