A NUMERICAL METHOD FOR 1D TIME-DEPENDENT SCHRÖDINGER EQUATION USING RADIAL BASIS FUNCTIONS

2013 ◽  
Vol 10 (02) ◽  
pp. 1341010 ◽  
Author(s):  
TONGSONG JIANG ◽  
ZHAOLIN JIANG ◽  
JOSEPH KOLIBAL

This paper proposes a new numerical method to solve the 1D time-dependent Schrödinger equations based on the finite difference scheme by means of multiquadrics (MQ) and inverse multiquadrics (IMQ) radial basis functions. The numerical examples are given to confirm the good accuracy of the proposed methods.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Huantian Xie ◽  
Dingfang Li ◽  
Feng Li

Based on the finite difference scheme in time, the method of particular solutions using radial basis functions is proposed to solve one-dimensional time-dependent inhomogeneous Burgers’ equations. Two numerical examples with good accuracy are given to validate the proposed method.


2021 ◽  
Vol 15 ◽  
pp. 174830262110113
Author(s):  
Qianying Hong ◽  
Ming-jun Lai ◽  
Jingyue Wang

We present a convergence analysis for a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fetami model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme.


Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Xu-Qian Fan ◽  
Wenyong Gong

Abstract Path planning has been widely investigated by many researchers and engineers for its extensive applications in the real world. In this paper, a biharmonic radial basis potential function (BRBPF) representation is proposed to construct navigation fields in 2D maps with obstacles, and it therefore can guide and design a path joining given start and goal positions with obstacle avoidance. We construct BRBPF by solving a biharmonic equation associated with distance-related boundary conditions using radial basis functions (RBFs). In this way, invalid gradients calculated by finite difference methods in large size grids can be preventable. Furthermore, paths constructed by BRBPF are smoother than paths constructed by harmonic potential functions and other methods, and plenty of experimental results demonstrate that the proposed method is valid and effective.


2007 ◽  
Vol 05 (02) ◽  
pp. 95-122 ◽  
Author(s):  
M. N. BENBOURHIM ◽  
A. BOUHAMIDI

The paper deals with a div-curl approximation problem by weighted minimizing splines. The weighted minimizing splines are an extension of the well-known thin plate splines and are radial basis functions which allow the approximation or the interpolation of a scalar function from given scattered data. In this paper, we show that the theory of the weighted minimizing splines may also be used for the approximation or for the interpolation of a vector field controlled by the divergence and the curl of the vector field. Numerical examples are given to show the efficiency of this method.


2014 ◽  
Vol 598 ◽  
pp. 409-413 ◽  
Author(s):  
Zakieh Avazzadeh ◽  
Wen Chen ◽  
Vahid Reza Hosseini

In this work, we describe the radial basis functions for solving the time fractional partial differential equations defined by Caputo sense. These problems can be discretized in the time direction based on finite difference scheme and is continuously approximated by using the radial basis functions in the space direction which achieves the semi-discrete solution. Numerical results accuracy the efficiency of the presented method.


Sign in / Sign up

Export Citation Format

Share Document