A numerical method for one-dimensional nonlinear Sine-Gordon equation using collocation and radial basis functions

2008 ◽  
Vol 24 (2) ◽  
pp. 687-698 ◽  
Author(s):  
M. Dehghan ◽  
Ali Shokri
2019 ◽  
Vol 53 (3) ◽  
pp. 925-958 ◽  
Author(s):  
Jan S. Hesthaven ◽  
Fabian Mönkeberg

To solve hyperbolic conservation laws we propose to use high-order essentially nonoscillatory methods based on radial basis functions. We introduce an entropy stable arbitrary high-order finite difference method (RBF-TeCNOp) and an entropy stable second order finite volume method (RBF-EFV2) for one-dimensional problems. Thus, we show that methods based on radial basis functions are as powerful as methods based on polynomial reconstruction. The main contribution is the construction of an algorithm and a smoothness indicator that ensures an interpolation function which fulfills the sign-property on general one dimensional grids.


2013 ◽  
Vol 10 (02) ◽  
pp. 1341010 ◽  
Author(s):  
TONGSONG JIANG ◽  
ZHAOLIN JIANG ◽  
JOSEPH KOLIBAL

This paper proposes a new numerical method to solve the 1D time-dependent Schrödinger equations based on the finite difference scheme by means of multiquadrics (MQ) and inverse multiquadrics (IMQ) radial basis functions. The numerical examples are given to confirm the good accuracy of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document