scholarly journals REDUCED DYNAMICS FROM THE UNITARY GROUP TO SOME FLAG MANIFOLDS: INTERACTING MATRIX RICCATI EQUATIONS

2009 ◽  
Vol 06 (04) ◽  
pp. 573-581 ◽  
Author(s):  
KAZUYUKI FUJII ◽  
HIROSHI OIKE

In this paper we treat the time evolution of unitary elements in the N level system and consider the reduced dynamics from the unitary group U(N) to flag manifolds of the second type (in our terminology). Then we derive a set of differential equations of matrix Riccati types interacting with one another and present an important problem on a nonlinear superposition formula that the Riccati equation satisfies. Our result is a natural generalization of the paper Chaturvedi et al. [1] (arXiv: 0706.0964 [quant-ph]).

1998 ◽  
Vol 13 (21) ◽  
pp. 3601-3627 ◽  
Author(s):  
J. F. CARIÑENA ◽  
G. MARMO ◽  
J. NASARRE

Group theoretical methods are used to study some properties of the Riccati equation, which is the only differential equation admitting a nonlinear superposition principle. The Wei–Norman method is applied to obtain the associated differential equation in the group SL(2, ℝ). The superposition principle for first order differential equation systems and Lie–Scheffers theorem are also analyzed from this group theoretical perspective. Finally, the theory is applied in the solution of second order differential equations like time independent Schrödinger equation.


Author(s):  
Sambarta Chatterjee ◽  
Nancy Makri

We investigate the time evolution of the reduced density matrix (RDM) and its purity in the dynamics of a two-level system coupled to a dissipative harmonic bath, when the system is initially placed in one of its eigenstates.


1993 ◽  
Vol 9 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Xingbiao Hu ◽  
Yong Li ◽  
Qiming Liu

Author(s):  
Mostafa M. A. Khater ◽  
Adil Jhangeer ◽  
Hadi Rezazadeh ◽  
Lanre Akinyemi ◽  
M. Ali Akbar ◽  
...  

In this survey, structure solutions for the longitudinal suspense equation within a magneto-electro-elastic (MEE) circular judgment are extracted via the implementation of two one-of-a-kind techniques that are viewed as the close generalized technique in its field. This paper describes the dynamics of the longitudinal suspense within a MEE round rod. Nilsson and Lindau provided the visual proof of the arrival concerning longitudinal waves within thin metal films. They recommended removal of anomalies between the ports concerning emaciated ([Formula: see text] Å) Ag layers preserved on amorphous silica because of being mildly [Formula: see text]-polarized at frequency tier according to the brawny plasma frequency. Anomalies have been due to confusion over the longitudinal waves mirrored utilizing the two borders. The wavelength is connected according to this wave’s property, which is an awful lot smaller than the wave over light. The wave is outstanding only for altogether superfine films. However, metallic movies defended amorphous substrates that are intermittent within the forward levels of their evolution. This made researchers aware of the possibility on getting ready altogether few layers with a desire to discussing the promulgation about longitudinal waves up to expectation colorful each among reverberation or transport on [Formula: see text]-polarized light. The mated options via the use of generalized Riccati equation mapping method or generalized Kudryashov technique show the rule and effectiveness regarding its methods then its ability because of applying one kind of forms over nonlinear incomplete differential equations.


2011 ◽  
Vol 08 (03) ◽  
pp. 647-655
Author(s):  
KAZUYUKI FUJII

In this paper we study the evolution operator of a time-dependent Hamiltonian in the three level system. The evolution operator is based on SU(3) and its dimension is eight, so we obtain three complex Riccati differential equations interacting with one another (which have been obtained by Fujii and Oike) and two real phase equations. This is a canonical form of the evolution operator.


Author(s):  
Benjamin Ambrosio ◽  
Jean-Pierre Françoise

We investigate a system of partial differential equations of reaction–diffusion type which displays propagation of bursting oscillations. This system represents the time evolution of an assembly of cells constituted by a small nucleus of bursting cells near the origin immersed in the middle of excitable cells. We show that this system displays a global attractor in an appropriated functional space. Numerical simulations show the existence in this attractor of recurrent solutions which are waves propagating from the central source. The propagation seems possible if the excitability of the neighbouring cells is above some threshold.


2016 ◽  
Vol 373 ◽  
pp. 609-630 ◽  
Author(s):  
Hans Cruz ◽  
Dieter Schuch ◽  
Octavio Castaños ◽  
Oscar Rosas-Ortiz

Sign in / Sign up

Export Citation Format

Share Document