Some results on normal GCR-lightlike submanifolds of indefinite nearly Kaehler manifolds

2019 ◽  
Vol 16 (03) ◽  
pp. 1950037
Author(s):  
Megha ◽  
Sangeet Kumar

The purpose of this paper is to study normal [Formula: see text]-lightlike submanifolds of indefinite nearly Kaehler manifolds. We find some necessary and sufficient conditions for an isometrically immersed [Formula: see text]-lightlike submanifold of an indefinite nearly Kaehler manifold to be a normal [Formula: see text]-lightlike submanifold. Further, we derive a characterization theorem for holomorphic bisectional curvature of a normal [Formula: see text]-lightlike submanifold of an indefinite nearly Kaehler manifold.

2002 ◽  
Vol 33 (3) ◽  
pp. 209-222
Author(s):  
Bayram Sahin ◽  
Rifat Gunes

In this paper, we study CR-lighlike submanifolds of an indefinite Kaehler manifold. Integrability of distributions on CR-lightlike submanifold investigated. We give some necessary and sufficient conditions on integrability of distibutions on CR-lightlike submanifolds in an indefinite Kaehler manifolds.


2018 ◽  
Vol 15 (02) ◽  
pp. 1850024
Author(s):  
Garima Gupta ◽  
Rakesh Kumar ◽  
Rakesh Kumar Nagaich

We study radical screen transversal ([Formula: see text])-lightlike submanifolds of an indefinite Kaehler manifold admitting a quarter-symmetric non-metric connection and obtain a necessary and sufficient condition for the screen distribution of a radical [Formula: see text]-lightlike submanifold to be integrable. We also study totally umbilical radical [Formula: see text]-lightlike submanifolds and obtain some characterization theorems for a radical [Formula: see text]-lightlike submanifold to be a lightlike product manifold. Finally, we establish some results regarding the vanishes of null sectional curvature.


ISRN Geometry ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Rakesh Kumar ◽  
Sangeet Kumar ◽  
R. K. Nagaich

We study geodesic -lightlike submanifolds of indefinite Kaehler manifolds and obtain some necessary and sufficient conditions for a -lightlike submanifold to be a -lightlike product.


Author(s):  
Sangeet Kumar

In this paper, we investigate warped product semi-transversal lightlike submanifolds of indefinite Kaehler manifolds. It is shown that there does not exist any warped product semi-transversal lightlike submanifold of the type [Formula: see text] in an indefinite Kaehler manifold. Moreover, a necessary and sufficient condition for an isometrically immersed semi-transversal lightlike submanifold of an indefinite Kaehler manifold to be a semi-transversal lightlike warped product of the type [Formula: see text] is obtained, in terms of the shape operator.


Author(s):  
Koji Matsumoto

In 1994, in [13], N. Papaghiuc introduced the notion of semi-slant submanifold in a Hermitian manifold which is a generalization of CR- and slant-submanifolds. In particular, he considered this submanifold in Kaehlerian manifolds, [13]. Then, in 2007, V. A. Khan and M. A. Khan considered this submanifold in a nearly Kaehler manifold and obtained interesting results, [11]. Recently, we considered semi-slant submanifolds in a locally conformal Kaehler manifold and gave a necessary and sufficient conditions for two distributions (holomorphic and slant) to be integrable. Moreover, we considered these submanifolds in a locally conformal Kaehler space form, [4]. In this paper, we define 2-kind warped product semi-slant submanifolds in a locally conformal Kaehler manifold and consider some properties of these submanifolds.


2020 ◽  
Vol 17 (07) ◽  
pp. 2050100
Author(s):  
Rupali Kaushal ◽  
Rashmi Sachdeva ◽  
Rakesh Kumar ◽  
Rakesh Kumar Nagaich

We study semi-invariant Riemannian submersions from a nearly Kaehler manifold to a Riemannian manifold. It is well known that the vertical distribution of a Riemannian submersion is always integrable therefore, we derive condition for the integrability of horizontal distribution of a semi-invariant Riemannian submersion and also investigate the geometry of the foliations. We discuss the existence and nonexistence of semi-invariant submersions such that the total manifold is a usual product manifold or a twisted product manifold. We establish necessary and sufficient conditions for a semi-invariant submersion to be a totally geodesic map. Finally, we study semi-invariant submersions with totally umbilical fibers.


Author(s):  
Rupali Kaushal ◽  
Rakesh Kumar ◽  
Rakesh Kumar Nagaich

We study screen conformal lightlike submersions of semi-transversal lightlike submanifolds of indefinite Kaehler manifolds, which can be considered as a lightlike version of horizontally conformal submersions. We establish necessary and sufficient conditions for a screen conformal lightlike submersion to be harmonic.


Author(s):  
Akhilesh Yadav

In this paper, we introduce the notion of radical transversal screen Cauchy-Riemann (SCR)-lightlike submanifolds of indefinite Kaehler manifolds giving a charac-terization theorem with some non-trivial examples of such submanifolds. Integrabilityconditions of distributions D1, D2, D and D? on radical transversal SCR-lightlike sub-manifolds of an indefinite Kaehler manifold have been obtained. Further, we obtainnecessary and sufficient conditions for foliations determined by the above distributionsto be totally geodesic.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Rakesh Kumar ◽  
Varun Jain ◽  
R. K. Nagaich

We study mixed geodesicGCR-lightlike submanifolds of indefinite Sasakian manifolds and obtain some necessary and sufficient conditions for aGCR-lightlike submanifold to be aGCR-lightlike product.


Filomat ◽  
2021 ◽  
Vol 35 (8) ◽  
pp. 2585-2594
Author(s):  
S.S. Shukla ◽  
Akhilesh Yadav

In this paper, we introduce the notion of radical transversal screen Cauchy-Riemann (SCR)- lightlike submanifolds of indefinite Sasakian manifolds giving characterization theorem with some nontrivial examples of such submanifolds. Integrability conditions of distributions D1, D2, D and D? on radical transversal SCR-lightlike submanifolds of an indefinite Sasakian manifold have been obtained. Further, we obtain necessary and sufficient conditions for foliations determined by above distributions to be totally geodesic.


Sign in / Sign up

Export Citation Format

Share Document