lightlike submanifolds
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 34)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gauree Shanker ◽  
Ankit Yadav

PurposeThe purpose of this paper is to study the geometry of screen real lightlike submanifolds of metallic semi-Riemannian manifolds. Also, the authors investigate whether these submanifolds are warped product lightlike submanifolds or not.Design/methodology/approachThe paper is design as follows: In Section 3, the authors introduce screen-real lightlike submanifold of metallic semi Riemannian manifold. In Section 4, the sufficient conditions for the radical and screen distribution of screen-real lightlike submanifolds, to be integrable and to be have totally geodesic foliation, have been established. Furthermore, the authors investigate whether these submanifolds can be written in the form of warped product lightlike submanifolds or not.FindingsThe geometry of the screen-real lightlike submanifolds has been studied. Also various results have been established. It has been proved that there does not exist any class of irrotational screen-real r-lightlike submanifold such that it can be written in the form of warped product lightlike submanifolds.Originality/valueAll results are novel and contribute to further study on lightlike submanifolds of metallic semi-Riemannian manifolds.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Samuel Ssekajja

PurposeThe author considers an invariant lightlike submanifold M, whose transversal bundle tr(TM) is flat, in an indefinite Sasakian manifold M¯(c) of constant φ¯-sectional curvature c. Under some geometric conditions, the author demonstrates that c=1, that is, M¯ is a space of constant curvature 1. Moreover, M and any leaf M′ of its screen distribution S(TM) are, also, spaces of constant curvature 1.Design/methodology/approachThe author has employed the techniques developed by K. L. Duggal and A. Bejancu of reference number 7.FindingsThe author has discovered that any totally umbilic invariant ligtlike submanifold, whose transversal bundle is flat, in an indefinite Sasakian space form is, in fact, a space of constant curvature 1 (see Theorem 4.4).Originality/valueTo the best of the author’s findings, at the time of submission of this paper, the results reported are new and interesting as far as lightlike geometry is concerned.


Filomat ◽  
2021 ◽  
Vol 35 (8) ◽  
pp. 2585-2594
Author(s):  
S.S. Shukla ◽  
Akhilesh Yadav

In this paper, we introduce the notion of radical transversal screen Cauchy-Riemann (SCR)- lightlike submanifolds of indefinite Sasakian manifolds giving characterization theorem with some nontrivial examples of such submanifolds. Integrability conditions of distributions D1, D2, D and D? on radical transversal SCR-lightlike submanifolds of an indefinite Sasakian manifold have been obtained. Further, we obtain necessary and sufficient conditions for foliations determined by above distributions to be totally geodesic.


Sign in / Sign up

Export Citation Format

Share Document