Bis(4′-tert-butylbiphenyl-4-yl)aniline (BBA)-substituted A3B zinc porphyrin as light harvesting material for conversion of light energy to electricity
Limited synthetic steps via low-cost starting materials are needed to develop large-scale light-active materials for efficient solar cells. Here, novel bis(4[Formula: see text]-tert-butylbiphenyl-4-yl)aniline (BBA) based A3B zinc porphyrin (GB) is synthesized and applied as a light harvesting/electron injection material in dye-sensitized solar cells. The GB sensitizer was characterized by various spectroscopic techniques and the optimized device shows [Formula: see text] of 10.98 ± 0.37 mA/cm2 and power conversion efficiency (PCE) of 3.34 ± 0.26%. In addition, performance is enhanced up to ∼3.9% by the addition of co-adsorbent 3a,7a-dihydroxy-5b-cholic acid (chenodeoxycholic acid, CDCA) to minimize [Formula: see text]-[Formula: see text] staking of the planar porphyrin macrocycles. These results demonstrate that novel broad-absorbing light-active material (GB) could be used for indoor solar panels.