The Interpolating Complex Variable Element-Free Galerkin Method for Temperature Field Problems

2015 ◽  
Vol 07 (02) ◽  
pp. 1550017 ◽  
Author(s):  
Yajie Deng ◽  
Chao Liu ◽  
Miaojuan Peng ◽  
Yumin Cheng

In this paper, an interpolating complex variable moving least-squares (ICVMLS) method is presented. In the ICVMLS method, the trial function of a two-dimensional problem is formed with a one-dimensional basis function, and the shape function of the ICVMLS method satisfies the property of Kronecker δ function. The ICVMLS method has greater computational efficiency than the moving least-squares (MLS) approximation. Then combining the ICVMLS method with the Galerkin weak form of temperature field problems, an interpolating complex variable element-free Galerkin (ICVEFG) method is proposed. In the ICVEFG method, we can obtain the equation system by applying the essential boundary conditions directly. Compared with the element-free Galerkin (EFG) method and the complex variable element-free Galerkin (CVEFG) method, the ICVEFG method in this paper has higher accuracy and efficiency.

Author(s):  
HONGPING REN ◽  
YUMIN CHENG

In this paper, by constructing a new functional, an improved complex variable moving least-squares (ICVMLS) approximation is presented. Based on element-free Galerkin (EFG) method and the ICVMLS approximation, a new complex variable element-free Galerkin (CVEFG) method for two-dimensional elasticity problems is presented. Galerkin weak form is used to obtain the discretized equations and the essential boundary conditions are applied with Lagrange multiplier. Then the formulae of the new CVEFG method for two-dimensional elasticity problems are obtained. Compared with the conventional EFG method, the new CVEFG method has greater computational precision and efficiency. For the purposes of demonstration, some selected numerical examples are solved using the ICVEFG method.


2011 ◽  
Vol 03 (04) ◽  
pp. 735-758 ◽  
Author(s):  
HONGPING REN ◽  
YUMIN CHENG

In this paper, a new method for deriving the moving least-squares (MLS) approximation is presented, and the interpolating moving least-squares (IMLS) method proposed by Lancaster is improved. Compared with the IMLS method proposed by Lancaster, a simpler formula of the shape function is given in the improved IMLS method in this paper so that the new method has higher computing efficiency. Combining the shape function constructed by the improved IMLS method with Galerkin weak form of the elasticity problems, the interpolating element-free Galerkin (IEFG) method for the two-dimensional elasticity problems is presented, and the corresponding formulae are obtained. In the IEFG method, the boundary conditions can be applied directly which makes the computing efficiency higher than the conventional EFG method. Some numerical examples are presented to demonstrate the validity of the method.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
F. X. Sun ◽  
C. Liu ◽  
Y. M. Cheng

Based on the moving least-squares (MLS) approximation, an improved interpolating moving least-squares (IIMLS) method based on nonsingular weight functions is presented in this paper. Then combining the IIMLS method and the Galerkin weak form, an improved interpolating element-free Galerkin (IIEFG) method is presented for two-dimensional potential problems. In the IIMLS method, the shape function of the IIMLS method satisfies the property of Kroneckerδfunction, and there is no difficulty caused by singularity of the weight function. Then in the IIEFG method presented in this paper, the essential boundary conditions are applied naturally and directly. Moreover, the number of unknown coefficients in the trial function of the IIMLS method is less than that of the MLS approximation; then under the same node distribution, the IIEFG method has higher computational precision than element-free Galerkin (EFG) method and interpolating element-free Galerkin (IEFG) method. Four selected numerical examples are presented to show the advantages of the IIMLS and IIEFG methods.


2009 ◽  
Vol 01 (02) ◽  
pp. 367-385 ◽  
Author(s):  
MIAOJUAN PENG ◽  
PEI LIU ◽  
YUMIN CHENG

Based on element-free Galerkin (EFG) method and the complex variable moving least-squares (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional elasticity problems is presented in this paper. With the CVMLS approximation, the trial function of a two-dimensional problem is formed with a one-dimensional basis function. The number of unknown coefficients in the trial function of the CVMLS approximation is less than in the trial function of moving least-squares (MLS) approximation, and we can thus select fewer nodes in the meshless method that is formed from the CVMLS approximation than are required in the meshless method of the MLS approximation with no loss of precision. The formulae of the CVEFG method for two-dimensional elasticity problems is obtained. Compared with the conventional meshless method, the CVEFG method has a greater precision and computational efficiency. For the purposes of demonstration, some selected numerical examples are solved using the CVEFG method.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Yang Cao ◽  
Jun-Liang Dong ◽  
Lin-Quan Yao

The element-free Galerkin (EFG) method is one of the widely used meshfree methods for solving partial differential equations. In the EFG method, shape functions are derived from a moving least-squares (MLS) approximation, which involves the inversion of a small matrix for every point of interest. To avoid the calculation of matrix inversion in the formulation of the shape functions, an improved MLS approximation is presented, where an orthogonal function system with a weight function is used. However, it can also lead to ill-conditioned or even singular system of equations. In this paper, aspects of the IMLS approximation are analyzed in detail. The reason why singularity problem occurs is studied. A novel technique based on matrix triangular process is proposed to solve this problem. It is shown that the EFG method with present technique is very effective in constructing shape functions. Numerical examples are illustrated to show the efficiency and accuracy of the proposed method. Although our study relies on monomial basis functions, it is more general than existing methods and can be extended to any basis functions.


2019 ◽  
Vol 11 (10) ◽  
pp. 1950104 ◽  
Author(s):  
Yajie Deng ◽  
Xiaoqiao He ◽  
Ying Dai

In this paper, the improved interpolating complex variable moving least squares (IICVMLS) method is applied, in which the complete basis function is introduced and combined with the singular weight function to achieve the orthometric basis function. Then, the interpolating shape function is achieved to construct the interpolating trial function. Incorporating the IICVMLS method and the Galerkin integral weak form, an improved interpolating complex variable element free Galerkin (IICVEFG) method is proposed to solve the 2D potential problem. Because the essential boundary conditions can be straightaway imposed in the above method, the expressions of final dispersed matrices are more concise in contrast to the non-interpolating complex variable meshless methods. Through analyzing four specific potential problems, the IICVEFG method is validated with greater computing precision and efficiency.


2019 ◽  
Vol 11 (10) ◽  
pp. 1950105 ◽  
Author(s):  
Binhua Wang ◽  
Yongqi Ma ◽  
Yumin Cheng

In this paper, the improved complex variable element-free Galerkin (ICVEFG) method is proposed for solving the bending problem of thin plate on elastic foundations. In the ICVEFG method, the approximation function regarding the deflection of thin plate is formed with the improved complex moving least-squares (ICVMLS) approximation, the discrete equation is obtained from Galerkin weak form of bending problem of thin plate on different elastic foundations, and essential boundary conditions are considered based on penalty method. As the ICVMLS approximation is based on the complex variable theory, it can obtain the shape function quickly with high precision. Three sample problems are used to discuss the advantages of the ICVEFG method, and the numerical results show that the ICVEFG method presented in this paper has a fast convergence speed and great computational accuracy.


Author(s):  
Yumin Cheng ◽  
Funong Bai ◽  
Chao Liu ◽  
Miaojuan Peng

Using the interpolating moving least-squares (IMLS) method to form the shape function, a novel improved element-free Galerkin (IEFG) method is presented for solving nonlinear elastic large deformation problems. To obtain the formulae of the IEFG method for elastic large deformation problems, we use the Galerkin weak form to obtain the discretized system equation, and use the penalty method to apply the displacement boundary conditions. Some selected numerical examples of two-dimensional elastic large deformation problems are given, and the numerical results are analyzed. From the examples, it is shown that the IEFG method in this paper has higher computational precision than the element-free Galerkin (EFG) method presented before.


2016 ◽  
Vol 08 (08) ◽  
pp. 1650096 ◽  
Author(s):  
Fengxin Sun ◽  
Jufeng Wang ◽  
Yumin Cheng

An improved interpolating element-free Galerkin (IIEFG) method for elastoplasticity is proposed in this paper. In the IIEFG method, the shape functions are constructed by the improved interpolating moving least-squares (IIMLS) method, and the final system equations are obtained by using the Galerkin weak form of elastoplasticity. Compared with the interpolating moving least-squares (IMLS) method, the weight functions are not singular in the IIMLS method, in which the shape functions have the interpolating property. The IIMLS method has fewer unknown coefficients to be solved in the trial functions than the moving least-squares (MLS) approximation. Hence, the IIEFG method is able to directly enforce the displacement boundary condition and obtain numerical solutions with high computational accuracy and efficiency. To show advantages of the IIEFG method, some selected elastoplastic examples are given.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Na Zhao ◽  
Hongping Ren

An interpolating element-free Galerkin (IEFG) method is presented for transient heat conduction problems. The shape function in the moving least-squares (MLS) approximation does not satisfy the property of Kronecker delta function, so an interpolating moving least-squares (IMLS) method is discussed; then combining the shape function constructed by the IMLS method and Galerkin weak form of the 2D transient heat conduction problems, the interpolating element-free Galerkin (IEFG) method for transient heat conduction problems is presented, and the corresponding formulae are obtained. The main advantage of this approach over the conventional meshless method is that essential boundary conditions can be applied directly. Numerical results show that the IEFG method has high computational accuracy.


Sign in / Sign up

Export Citation Format

Share Document