Modeling Equilibrium Swelling of a Dual pH- and Temperature-Responsive Core/Shell Hydrogel

2016 ◽  
Vol 08 (03) ◽  
pp. 1650039 ◽  
Author(s):  
N. Hamzavi ◽  
A. D. Drozdov ◽  
Y. Gu ◽  
E. Birgersson

The equilibrium swelling of a dual stimuli-responsive core/shell hydrogel is studied by a thermodynamic model. This hydrogel shows thermo-sensitivity as well as pH-sensitivity. The model captures the inhomogeneous swelling of core/shell hydrogels and also, accounts for temperature and pH sensitivity. The predictions of this model are verified with the swelling experiments of a core/shell microgel comprising poly N-isopropyl acrylamide (pNIPAM) and acrylic acid (AAc). The model calculates the equilibrium swelling within the ionic core and the neutral shell. Simulation results can reproduce the equilibrium swelling-temperature curves of this microgel at different pH values considering the delay in the volume phase transition temperature (VPTT) of the ionic polymer gel (pNIPAM-co-AAc) in the core. Two transition points are found in the equilibrium swelling behavior of the hydrogel akin to the VPTTs of the core and shell domains at high pH values of bath solutions. Likewise, the degree of ionization in the core domain is predicted to have a two-step transition behavior corresponding to the VPTTs of the core and shell domains at high pH values of bath solutions. It is shown that the equilibrium swelling of the ionic core is mainly influenced by the electrostatic repulsion between bound charges rather than the ionic pressure. Furthermore, it is determined that the maximum radial stress occurs at the core/shell interface and reaches its maximum value about the VPTT of the core.

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Sungho Lee ◽  
Tatsuya Miyajima ◽  
Ayae Sugawara-Narutaki ◽  
Katsuya Kato ◽  
Fukue Nagata

Biodegradable nanoparticles have been well studied as biocompatible delivery systems. Nanoparticles of less than 200 nm in size can facilitate the passive targeting of drugs to tumour tissues and their accumulation therein via the enhanced permeability and retention (EPR) effect. Recent studies have focused on stimuli-responsive drug delivery systems (DDS) for improving the effectiveness of chemotherapy; for example, pH-sensitive DDS depend on the weakly acidic and neutral extracellular pH of tumour and normal tissues, respectively. In our previous work, core–shell nanoparticles composed of the biodegradable polymer poly(lactic acid) (PLA) and the widely used inorganic biomaterial hydroxyapatite (HAp, which exhibits pH sensitivity) were prepared using a surfactant-free method. These PLA/HAp core–shell nanoparticles could load 750 wt% of a hydrophobic model drug. In this work, the properties of the PLA/HAp core–shell nanoparticles loaded with the anti-cancer drug paclitaxel (PTX) were thoroughly investigated in vitro . Because the PTX-containing nanoparticles were approximately 80 nm in size, they can be expected to facilitate efficient drug delivery via the EPR effect. The core–shell nanoparticles were cytotoxic towards cancer cells (4T1). This was due to the pH sensitivity of the HAp shell, which is stable in neutral conditions and dissolves in acidic conditions. The cytotoxic activity of the PTX-loaded nanoparticles was sustained for up to 48 h, which was suitable for tumour growth inhibition. These results suggest that the core–shell nanoparticles can be suitable drug carriers for various water-insoluble drugs.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1084
Author(s):  
Kaimin Chen ◽  
Lan Cao ◽  
Ying Zhang ◽  
Kai Li ◽  
Xue Qin ◽  
...  

Stimuli-responsive nanoparticles are among the most popular research topics. In this study, two types of core-shell (polystyrene with a photoiniferter (PSV) as the core and diblock as the shell) polymer brushes (PSV@PNIPA-b-PAA and PSV@PAA-b-PNIPA) were designed and prepared using surface-initiated photoiniferter-mediated polymerization (SI-PIMP). Moreover, their pH- and temperature-stimuli responses were explored by dynamic light scattering (DLS) and turbidimeter under various conditions. The results showed that the conformational change was determined on the basis of the competition among electrostatic repulsion, hydrophobic interaction, hydrogen bonding, and steric hindrance, which was also confirmed by protein adsorption experiments. These results are not only helpful for the design and synthesis of stimuli-responsive polymer brushes but also shed light on controlled protein immobilization under mild conditions.


2001 ◽  
Vol 16 (5) ◽  
pp. 409-418 ◽  
Author(s):  
Kazuya Suzuki ◽  
Takeshi Yumura ◽  
Yuko Tanaka ◽  
Mitsuru Akashi

Stimuli-responsive gel was hybridized with porous silica particles, by radical polymerization of methacrylic acid (MA) in the presence of a crosslinker. Brilliant Blue FCF (BBFCF) was encapsulated in the core of the particle and its release behavior from the particle under specific stimuli was studied. PMA gel hybridized silica particles showed specific release behavior at different pH values while normal silica particles released BBFCF at the same rate at all pHs.


2020 ◽  
Vol 65 (10) ◽  
pp. 904
Author(s):  
V. O. Zamorskyi ◽  
Ya. M. Lytvynenko ◽  
A. M. Pogorily ◽  
A. I. Tovstolytkin ◽  
S. O. Solopan ◽  
...  

Magnetic properties of the sets of Fe3O4(core)/CoFe2O4(shell) composite nanoparticles with a core diameter of about 6.3 nm and various shell thicknesses (0, 1.0, and 2.5 nm), as well as the mixtures of Fe3O4 and CoFe2O4 nanoparticles taken in the ratios corresponding to the core/shell material contents in the former case, have been studied. The results of magnetic research showed that the coating of magnetic nanoparticles with a shell gives rise to the appearance of two simultaneous effects: the modification of the core/shell interface parameters and the parameter change in both the nanoparticle’s core and shell themselves. As a result, the core/shell particles acquire new characteristics that are inherent neither to Fe3O4 nor to CoFe2O4. The obtained results open the way to the optimization and adaptation of the parameters of the core/shell spinel-ferrite-based nanoparticles for their application in various technological and biomedical domains.


2012 ◽  
Vol 2 (2) ◽  
pp. 79-86 ◽  
Author(s):  
James W. McKinley ◽  
Rebecca E. Parzen ◽  
Álvaro Mercado Guzmán

Urine-diversion dehydration toilets (UDDT) are common throughout the developing world, and the toilet product is widely used as compost. There is no comprehensive research to date that characterizes the compost to determine its quality, extent of pathogen inactivation, and the effects of climate and bulking materials on the compost. Compost was collected from 45 UDDT in Bolivia and analyzed for physical, chemical, and biological parameters. Eighty percent and 56% of samples did not meet acceptable compost guidelines for moisture content and pH, respectively, indicating desiccation was the dominant process in UDDT. Bulking materials significantly impacted compost characteristics in terms of pH, carbon, carbon-to-nitrogen ratio, and carbon stability (P < 0.05). Composts with ash exhibited, on average, low carbon concentrations (4.9%) and high pH values (9.7), which can be harmful to plants and composting microorganisms. Composts with sawdust exhibited, on average, high carbon concentrations (40.0%) and carbon-to-nitrogen ratios (31.0). Climate had no significant impact on chemical characteristics, however composts from humid regions had significantly higher moisture contents (34.4%) than those from arid climates (24.8%) (P < 0.05). Viable Ascaris lumbricoides ova were identified in 31% of samples, including samples with high pH, low moisture contents, and long storage times.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Christian Zambrzycki ◽  
Runbang Shao ◽  
Archismita Misra ◽  
Carsten Streb ◽  
Ulrich Herr ◽  
...  

Core-shell materials are promising functional materials for fundamental research and industrial application, as their properties can be adapted for specific applications. In particular, particles featuring iron or iron oxide as core material are relevant since they combine magnetic and catalytic properties. The addition of an SiO2 shell around the core particles introduces additional design aspects, such as a pore structure and surface functionalization. Herein, we describe the synthesis and application of iron-based core-shell nanoparticles for two different fields of research that is heterogeneous catalysis and water purification. The iron-based core shell materials were characterized by transmission electron microscopy, as well as N2-physisorption, X-ray diffraction, and vibrating-sample magnetometer measurements in order to correlate their properties with the performance in the target applications. Investigations of these materials in CO2 hydrogenation and water purification show their versatility and applicability in different fields of research and application, after suitable individual functionalization of the core-shell precursor. For design and application of magnetically separable particles, the SiO2 shell is surface-functionalized with an ionic liquid in order to bind water pollutants selectively. The core requires no functionalization, as it provides suitable magnetic properties in the as-made state. For catalytic application in synthesis gas reactions, the SiO2-stabilized core nanoparticles are reductively functionalized to provide the catalytically active metallic iron sites. Therefore, Fe@SiO2 core-shell nanostructures are shown to provide platform materials for various fields of application, after a specific functionalization.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 359
Author(s):  
Francesco Ruffino

Bimetallic nanoparticles show novel electronic, optical, catalytic or photocatalytic properties different from those of monometallic nanoparticles and arising from the combination of the properties related to the presence of two individual metals but also from the synergy between the two metals. In this regard, bimetallic nanoparticles find applications in several technological areas ranging from energy production and storage to sensing. Often, these applications are based on optical properties of the bimetallic nanoparticles, for example, in plasmonic solar cells or in surface-enhanced Raman spectroscopy-based sensors. Hence, in these applications, the specific interaction between the bimetallic nanoparticles and the electromagnetic radiation plays the dominant role: properties as localized surface plasmon resonances and light-scattering efficiency are determined by the structure and shape of the bimetallic nanoparticles. In particular, for example, concerning core-shell bimetallic nanoparticles, the optical properties are strongly affected by the core/shell sizes ratio. On the basis of these considerations, in the present work, the Mie theory is used to analyze the light-scattering properties of bimetallic core–shell spherical nanoparticles (Au/Ag, AuPd, AuPt, CuAg, PdPt). By changing the core and shell sizes, calculations of the intensity of scattered light from these nanoparticles are reported in polar diagrams, and a comparison between the resulting scattering efficiencies is carried out so as to set a general framework useful to design light-scattering-based devices for desired applications.


Author(s):  
Yi Guan ◽  
Nan Li ◽  
Jiao He ◽  
Yongliang Li ◽  
Lei Zhang ◽  
...  

Herein, we report a post-assembly strategy by growing the bimetallic Co/Zn zeolitic imidazolate frameworks (BIMZIF) on the surface of the customized Mo metal-organic frameworks (MOFs) (Mo-MOF) to prepare the core-shell...


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 502
Author(s):  
Karel Šindelka ◽  
Zuzana Limpouchová ◽  
Karel Procházka

Using coarse-grained dissipative particle dynamics (DPD) with explicit electrostatics, we performed (i) an extensive series of simulations of the electrostatic co-assembly of asymmetric oppositely charged copolymers composed of one (either positively or negatively charged) polyelectrolyte (PE) block A and one water-soluble block B and (ii) studied the solubilization of positively charged porphyrin derivatives (P+) in the interpolyelectrolyte complex (IPEC) cores of co-assembled nanoparticles. We studied the stoichiometric mixtures of 137 A10+B25 and 137 A10−B25 chains with moderately hydrophobic A blocks (DPD interaction parameter aAS=35) and hydrophilic B blocks (aBS=25) with 10 to 120 P+ added (aPS=39). The P+ interactions with other components were set to match literature information on their limited solubility and aggregation behavior. The study shows that the moderately soluble P+ molecules easily solubilize in IPEC cores, where they partly replace PE+ and electrostatically crosslink PE− blocks. As the large P+ rings are apt to aggregate, P+ molecules aggregate in IPEC cores. The aggregation, which starts at very low loadings, is promoted by increasing the number of P+ in the mixture. The positively charged copolymers repelled from the central part of IPEC core partially concentrate at the core-shell interface and partially escape into bulk solvent depending on the amount of P+ in the mixture and on their association number, AS. If AS is lower than the ensemble average ⟨AS⟩n, the copolymer chains released from IPEC preferentially concentrate at the core-shell interface, thus increasing AS, which approaches ⟨AS⟩n. If AS>⟨AS⟩n, they escape into the bulk solvent.


Sign in / Sign up

Export Citation Format

Share Document