Influence of Material Uncertainty on Vibration Characteristics of Higher-Order Cracked Functionally Gradient Plates Using XFEM
In this study, the influence of material uncertainty on the vibration characteristics of the cracked functionally graded materials (FGM) plates is investigated. Extended stochastic finite element formulation is implemented to model the cracked FGM plate with material uncertainty using higher-order shear deformation theory (HSDT). The level set function is employed to track the crack in the FGM domain. The concept of partition of unity technique is implemented to enrich the primary variable with additional functions. The gradation of the material properties along the thickness direction is done using the power-law distribution. The first-order perturbation technique (FOPT) is incorporated in the methodology for stochastic vibration analysis. The convergence and validation study has been performed to verify the efficacy and accuracy of the formulation. Numerical results are obtained to show the effects of various influential parameters like crack length, gradient index, thickness ratio, and boundary condition on the covariance of the square of natural frequencies. The presented computational approach is accurate, efficient, and robust enough to investigate the vibration response of cracked FGM plates with material randomness.