On the Dynamic Response of Imperfection Sensitive Higher Order Functionally Graded Plates with Random System Parameters
This paper presents the influence of various random system parameters on dynamics response of imperfection sensitive higher order shear deformable functionally graded material (FGM) plates. Young’s moduli, Poisson’s ratio and volume fraction index are considered as random system parameters. The material properties of the FGM plates are assumed to vary along the thickness direction using simple power-law distribution in terms of the volume fraction of the constituents. The plate kinematics is based on Reddy’s higher order shear deformation theory. Finite element method (FEM) is employed in conjunction with first-order perturbation technique (FOPT) and Newmark integration scheme to explore the influence of different system parameters, like volume fraction indices, aspect ratio, material uncertainties, and imperfection amplitude on the dynamic responses of the FGM plates.