Derivation algebra of semi-direct sum of Lie algebras

Author(s):  
Mohammad Reza Alemi ◽  
Farshid Saeedi

Let [Formula: see text] and [Formula: see text] be two Lie algebras over an arbitrary field [Formula: see text], and let [Formula: see text] be the semidirect sum of [Formula: see text] by [Formula: see text]. In this paper, we give the structure of derivation algebra of [Formula: see text]; then as a consequence we illustrate the structure and dimension derivation algebra of Heisenberg Lie algebras.

2019 ◽  
Vol 6 (1) ◽  
pp. 1624244
Author(s):  
Mohammad Reza Alemi ◽  
Farshid Saeedi ◽  
Hari M. Srivastava

Author(s):  
R. M. Bryant ◽  
L. G. Kovács ◽  
Ralph Stöhr

AbstractLet r be a positive integer, F a field of odd prime characteristic p, and L the free Lie algebra of rank r over F. Consider L a module for the symmetric group , of all permutations of a free generating set of L. The homogeneous components Ln of L are finite dimensional submodules, and L is their direct sum. For p ≤ r ≤ 2p, the main results of this paper identify the non-porojective indecomposable direct summands of the Ln as Specht modules or dual Specht modules corresponding to certain partitions. For the case r = p, the multiplicities of these indecomposables in the direct decompositions of the Ln are also determined, as are the multiplicities of the projective indecomposables. (Corresponding results for p = 2 have been obtained elsewhere.)


1980 ◽  
Vol 3 (2) ◽  
pp. 247-253
Author(s):  
Taw Pin Lim

In a ringRwith involution whose symmetric elementsSare central, the skew-symmetric elementsKform a Lie algebra over the commutative ringS. The classification of such rings which are2-torsion free is equivalent to the classification of Lie algebrasKoverSequipped with a bilinear formfthat is symmetric, invariant and satisfies[[x,y],z]=f(y,z)x−f(z,x)y. IfSis a field of char≠2,f≠0anddimK>1thenKis a semisimple Lie algebra if and only iffis nondegenerate. Moreover, the derived algebraK′is either the pure quaternions overSor a direct sum of mutually orthogonal abelian Lie ideals ofdim≤2.


2010 ◽  
Vol 24 (07) ◽  
pp. 681-694
Author(s):  
LI-LI ZHU ◽  
JUN DU ◽  
XIAO-YAN MA ◽  
SHENG-JU SANG

By considering a discrete isospectral eigenvalue problem, a hierarchy of lattice soliton equations are derived. The relation to the Toda type lattice is achieved by variable transformation. With the help of Tu scheme, the Hamiltonian structure of the resulting lattice hierarchy is constructed. The Liouville integrability is then demonstrated. Semi-direct sum of Lie algebras is proposed to construct discrete integrable couplings. As applications, two kinds of discrete integrable couplings of the resulting system are worked out.


Author(s):  
E. M. Patterson

SynopsisBy examining certain connections between the derivatives and the powers of a Lie algebra, bounds are obtained for the indices of nilpotent Lie algebras over an arbitrary field. The results are used to obtain bounds for the indices of solvable Lie algebras over a field of characteristic zero.


1984 ◽  
Vol 36 (6) ◽  
pp. 961-972 ◽  
Author(s):  
David J. Winter

This paper is concerned with the structure of the derivation algebra Der L of the Lie algebra L with split Cartan subalgebra H. The Fitting decompositionof Der L with respect to ad ad H leads to a decompositionwhereThis decomposition is studied in detail in Section 2, where the centralizer of ad L∞ in D0(H) is shown to bewhich is Hom(L/L2, Center L) when H is Abelian. When the root-spaces La (a nonzero) are one-dimensional, this leads to the decomposition of Der L aswhere T is any maximal torus of D0(H).


2019 ◽  
Vol 19 (04) ◽  
pp. 2050070
Author(s):  
Antonio J. Calderón ◽  
Rosa M. Navarro ◽  
José M. Sánchez

We introduce the class of split Lie algebras of order 3 as the natural generalization of split Lie superalgebras and split Lie algebras. By means of connections of roots, we show that such a split Lie algebra of order 3 is of the form [Formula: see text] with [Formula: see text] a linear subspace of [Formula: see text] and any [Formula: see text] a well-described (split) ideal of [Formula: see text] satisfying [Formula: see text], with [Formula: see text], if [Formula: see text]. Additionally, under certain conditions, the (split) simplicity of the algebra is characterized in terms of the connections of nonzero roots, and a second Wedderburn type theorem for the class of split Lie algebras of order 3 (asserting that [Formula: see text] is the direct sum of the family of its (split) simple ideals) is stated.


1971 ◽  
Vol 23 (2) ◽  
pp. 325-331 ◽  
Author(s):  
Arthur A. Sagle

A Lie admissible algebra is a non-associative algebra A such that A− is a Lie algebra where A− denotes the anti-commutative algebra with vector space A and with commutation [X, Y] = XY – YX as multiplication; see [1; 2; 5]. Next let L−(X): A− → A−: Y → [X, Y] and H = {L−(X): X ∊ A−}; then, since A− is a Lie algebra, we see that H is contained in the derivation algebra of A− and consequently the direct sum g = A − ⊕ H can be naturally made into a Lie algebra with multiplication [PQ] given by: P = X + L−(U), Q = Y + L−(V) ∊ g, thenand note that for any P, [PP] = 0 so that [PQ] = −[QP] and the Jacobi identity for g follows from the fact that A− is Lie.


2004 ◽  
Vol 03 (02) ◽  
pp. 181-191 ◽  
Author(s):  
JEFFREY BERGEN

In this paper, we will determine the Lie algebra of derivations of rings which are generalizations of the enveloping algebras of Heisenberg Lie algebras. First, we will determine which derivations are X-inner and also determine which elements in the Martindale quotient ring induce X-inner derivations. Then, we will show that the Lie algebra of derivations is the direct sum of the ideal of X-inner derivations and a subalgebra which is isomorphic to a subalgebra of finite codimension in a Cartan type Lie algebra.


2012 ◽  
Vol 05 (02) ◽  
pp. 1250026 ◽  
Author(s):  
Ali Reza Salemkar ◽  
Behrouz Edalatzadeh

In this paper, we prove that the Schur multiplier of the direct sum of two arbitrary Lie algebras is isomorphic to the direct sum of the Schur multipliers of the direct factors and the usual tensor product of the Lie algebras, which is similar to the work of Miller (1952) in the group case. Also, a cover for the direct sum of two Lie algebras in terms of given covers of them will be constructed.


Sign in / Sign up

Export Citation Format

Share Document