On the sum of the generalized distance eigenvalues of graphs

Author(s):  
Hilal A. Ganie ◽  
Abdollah Alhevaz ◽  
Maryam Baghipur

In this paper, we study the generalized distance matrix [Formula: see text] assigned to simple connected graph [Formula: see text], which is the convex combinations of Tr[Formula: see text] and [Formula: see text] and defined as [Formula: see text] where [Formula: see text] and Tr[Formula: see text] denote the distance matrix and diagonal matrix of the vertex transmissions of a simple connected graph [Formula: see text], respectively. Denote with [Formula: see text], the generalized distance eigenvalues of [Formula: see text]. For [Formula: see text], let [Formula: see text] and [Formula: see text] be, respectively, the sum of [Formula: see text]-largest generalized distance eigenvalues and the sum of [Formula: see text]-smallest generalized distance eigenvalues of [Formula: see text]. We obtain bounds for [Formula: see text] and [Formula: see text] in terms of the order [Formula: see text], the Wiener index [Formula: see text] and parameter [Formula: see text]. For a graph [Formula: see text] of diameter 2, we establish a relationship between the [Formula: see text] and the sum of [Formula: see text]-largest generalized adjacency eigenvalues of the complement [Formula: see text]. We characterize the connected bipartite graph and the connected graphs with given independence number that attains the minimum value for [Formula: see text]. We also obtain some bounds for the graph invariants [Formula: see text] and [Formula: see text].

Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2019 ◽  
Vol 12 (01) ◽  
pp. 2050006 ◽  
Author(s):  
A. Alhevaz ◽  
M. Baghipur ◽  
E. Hashemi ◽  
S. Paul

The distance signless Laplacian matrix of a connected graph [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the distance matrix of [Formula: see text] and [Formula: see text] is the diagonal matrix of vertex transmissions of [Formula: see text]. If [Formula: see text] are the distance signless Laplacian eigenvalues of a simple graph [Formula: see text] of order [Formula: see text] then we put forward the graph invariants [Formula: see text] and [Formula: see text] for the sum of [Formula: see text]-largest and the sum of [Formula: see text]-smallest distance signless Laplacian eigenvalues of a graph [Formula: see text], respectively. We obtain lower bounds for the invariants [Formula: see text] and [Formula: see text]. Then, we present some inequalities between the vertex transmissions, distance eigenvalues, distance Laplacian eigenvalues, and distance signless Laplacian eigenvalues of graphs. Finally, we give some new results and bounds for the distance signless Laplacian energy of graphs.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 751
Author(s):  
Ludwin Basilio ◽  
Jair Simon ◽  
Jesús Leaños ◽  
Omar Cayetano

If G = ( V ( G ) , E ( G ) ) is a simple connected graph with the vertex set V ( G ) and the edge set E ( G ) , S is a subset of V ( G ) , and let B ( S ) be the set of neighbors of S in V ( G ) ∖ S . Then, the differential of S ∂ ( S ) is defined as | B ( S ) | − | S | . The differential of G, denoted by ∂ ( G ) , is the maximum value of ∂ ( S ) for all subsets S ⊆ V ( G ) . The graph operator Q ( G ) is defined as the graph that results by subdividing every edge of G once and joining pairs of these new vertices iff their corresponding edges are incident in G. In this paper, we study the relations between ∂ ( G ) and ∂ ( Q ( G ) ) . Besides, we exhibit some results relating the differential ∂ ( G ) and well-known graph invariants, such as the domination number, the independence number, and the vertex-cover number.


2021 ◽  
Vol 54 ◽  
Author(s):  
Shariefuddin Pirzada ◽  
Saleem Khan

Let $G$ be a connected graph with $n$ vertices, $m$ edges and having diameter $d$. The distance Laplacian matrix $D^{L}$ is defined as $D^L=$Diag$(Tr)-D$, where Diag$(Tr)$ is the diagonal matrix of vertex transmissions and $D$ is the distance matrix of $G$. The distance Laplacian eigenvalues of $G$ are the eigenvalues of $D^{L}$ and are denoted by $\delta_{1}, ~\delta_{1},~\dots,\delta_{n}$. In this paper, we obtain (a) the upper bounds for the sum of $k$ largest and (b) the lower bounds for the sum of $k$ smallest non-zero, distance Laplacian eigenvalues of $G$ in terms of order $n$, diameter $d$ and Wiener index $W$ of $G$. We characterize the extremal cases of these bounds. As a consequence, we also obtain the bounds for the sum of the powers of the distance Laplacian eigenvalues of $G$.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1276 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Yilun Shang

For a simple undirected connected graph G of order n, let D ( G ) , D L ( G ) , D Q ( G ) and T r ( G ) be, respectively, the distance matrix, the distance Laplacian matrix, the distance signless Laplacian matrix and the diagonal matrix of the vertex transmissions of G. The generalized distance matrix D α ( G ) is signified by D α ( G ) = α T r ( G ) + ( 1 - α ) D ( G ) , where α ∈ [ 0 , 1 ] . Here, we propose a new kind of Estrada index based on the Gaussianization of the generalized distance matrix of a graph. Let ∂ 1 , ∂ 2 , … , ∂ n be the generalized distance eigenvalues of a graph G. We define the generalized distance Gaussian Estrada index P α ( G ) , as P α ( G ) = ∑ i = 1 n e - ∂ i 2 . Since characterization of P α ( G ) is very appealing in quantum information theory, it is interesting to study the quantity P α ( G ) and explore some properties like the bounds, the dependence on the graph topology G and the dependence on the parameter α . In this paper, we establish some bounds for the generalized distance Gaussian Estrada index P α ( G ) of a connected graph G, involving the different graph parameters, including the order n, the Wiener index W ( G ) , the transmission degrees and the parameter α ∈ [ 0 , 1 ] , and characterize the extremal graphs attaining these bounds.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 426 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Kinkar Ch. Das ◽  
Yilun Shang

Given a simple connected graph G, let D ( G ) be the distance matrix, D L ( G ) be the distance Laplacian matrix, D Q ( G ) be the distance signless Laplacian matrix, and T r ( G ) be the vertex transmission diagonal matrix of G. We introduce the generalized distance matrix D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where α ∈ [ 0 , 1 ] . Noting that D 0 ( G ) = D ( G ) , 2 D 1 2 ( G ) = D Q ( G ) , D 1 ( G ) = T r ( G ) and D α ( G ) − D β ( G ) = ( α − β ) D L ( G ) , we reveal that a generalized distance matrix ideally bridges the spectral theories of the three constituent matrices. In this paper, we obtain some sharp upper and lower bounds for the generalized distance energy of a graph G involving different graph invariants. As an application of our results, we will be able to improve some of the recently given bounds in the literature for distance energy and distance signless Laplacian energy of graphs. The extremal graphs of the corresponding bounds are also characterized.


2016 ◽  
Vol 47 (2) ◽  
pp. 163-178
Author(s):  
Mahdieh Azari ◽  
Ali Iranmanesh

The vertex-edge Wiener index of a simple connected graph $G$ is defined as the sum of distances between vertices and edges of $G$. The vertex-edge Wiener polynomial of $G$ is a generating function whose first derivative is a $q-$analog of the vertex-edge Wiener index. Two possible distances $D_1(u, e|G)$ and $D_2(u, e|G)$ between a vertex $u$ and an edge $e$ of $G$ can be considered and corresponding to them, the first and second vertex-edge Wiener indices of $G$, and the first and second vertex-edge Wiener polynomials of $G$ are introduced. In this paper, we study the behavior of these indices and polynomials under the join and corona product of graphs. Results are applied for some classes of graphs such as suspensions, bottlenecks, and thorny graphs.


Author(s):  
Hanyuan Deng ◽  
G. C. Keerthi Vasan ◽  
S. Balachandran

The Wiener index [Formula: see text] of a connected graph [Formula: see text] is the sum of distances between all pairs of vertices of [Formula: see text]. A connected graph [Formula: see text] is said to be a cactus if each of its blocks is either a cycle or an edge. Let [Formula: see text] be the set of all [Formula: see text]-vertex cacti containing exactly [Formula: see text] cycles. Liu and Lu (2007) determined the unique graph in [Formula: see text] with the minimum Wiener index. Gutman, Li and Wei (2017) determined the unique graph in [Formula: see text] with maximum Wiener index. In this paper, we present the second-minimum Wiener index of graphs in [Formula: see text] and identify the corresponding extremal graphs, which solve partially the problem proposed by Gutman et al. [Cacti with [Formula: see text]-vertices and [Formula: see text] cycles having extremal Wiener index, Discrete Appl. Math. 232 (2017) 189–200] in 2017.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 169 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

Let G be a simple connected graph. In this paper, we study the spectral properties of the generalized distance matrix of graphs, the convex combination of the symmetric distance matrix D ( G ) and diagonal matrix of the vertex transmissions T r ( G ) . We determine the spectrum of the join of two graphs and of the join of a regular graph with another graph, which is the union of two different regular graphs. Moreover, thanks to the symmetry of the matrices involved, we study the generalized distance spectrum of the graphs obtained by generalization of the join graph operation through their eigenvalues of adjacency matrices and some auxiliary matrices.


10.37236/3508 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Ashkan Nikseresht ◽  
Zahra Sepasdar

In this article we state a relation between the Kirchhoff and Wiener indices of a simple connected graph $G$ and the Kirchhoff and Wiener indices of those subgraphs of $G$ which are induced by its blocks. Then as an application, we define a composition of a rooted tree $T$ and a graph $G$ and calculate its Kirchhoff index in terms of parameters of $T$ and $G$. Finally, we present an algorithm for computing the resistance distances and the Kirchhoff index and a similar one for computing the weighted distances and the Wiener index of a graph. These algorithms are asymptotically faster than the previously known algorithms, on graphs in which the order of the subgraphs induced by blocks is small with respect to the order of the graph.


Sign in / Sign up

Export Citation Format

Share Document