graph operation
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 17)

H-INDEX

4
(FIVE YEARS 3)

2022 ◽  
Vol 4 (1) ◽  
pp. 145-151
Author(s):  
Indrawati Lihawa ◽  
Sumarno Ismail ◽  
Isran K Hasan ◽  
Lailany Yahya ◽  
Salmun K Nasib ◽  
...  

Rainbow vertex-connection number is the minimum k-coloring on the vertex graph G and is denoted by rvc(G). Besides, the rainbow-vertex connection number can be applied to some special graphs, such as prism graph and path graph. Graph operation is a method used to create a new graph by combining two graphs. Therefore, this research uses corona product operation to form rainbow-vertex connection number at the graph resulting from corona product operation of prism graph and path graph (Pm,2 P3) (P3 Pm,2). The results of this study obtain that the theorem of rainbow vertex-connection number at the graph resulting from corona product operation of prism graph and path graph (Pm,2 P3) (P3 Pm,2) for 3 = m = 7 are rvc (G) = 2m rvc (G) = 2.


2021 ◽  
Vol 13 (4) ◽  
pp. 1-40
Author(s):  
Spoorthy Gunda ◽  
Pallavi Jain ◽  
Daniel Lokshtanov ◽  
Saket Saurabh ◽  
Prafullkumar Tale

A graph operation that contracts edges is one of the fundamental operations in the theory of graph minors. Parameterized Complexity of editing to a family of graphs by contracting k edges has recently gained substantial scientific attention, and several new results have been obtained. Some important families of graphs, namely, the subfamilies of chordal graphs, in the context of edge contractions, have proven to be significantly difficult than one might expect. In this article, we study the F -Contraction problem, where F is a subfamily of chordal graphs, in the realm of parameterized approximation. Formally, given a graph G and an integer k , F -Contraction asks whether there exists X ⊆ E(G) such that G/X ∈ F and | X | ≤ k . Here, G/X is the graph obtained from G by contracting edges in X . We obtain the following results for the F - Contraction problem: • Clique Contraction is known to be FPT . However, unless NP⊆ coNP/ poly , it does not admit a polynomial kernel. We show that it admits a polynomial-size approximate kernelization scheme ( PSAKS ). That is, it admits a (1 + ε)-approximate kernel with O ( k f(ε)) vertices for every ε > 0. • Split Contraction is known to be W[1]-Hard . We deconstruct this intractability result in two ways. First, we give a (2+ε)-approximate polynomial kernel for Split Contraction (which also implies a factor (2+ε)- FPT -approximation algorithm for Split Contraction ). Furthermore, we show that, assuming Gap-ETH , there is no (5/4-δ)- FPT -approximation algorithm for Split Contraction . Here, ε, δ > 0 are fixed constants. • Chordal Contraction is known to be W[2]-Hard . We complement this result by observing that the existing W[2]-hardness reduction can be adapted to show that, assuming FPT ≠ W[1] , there is no F(k) - FPT -approximation algorithm for Chordal Contraction . Here, F(k) is an arbitrary function depending on k alone. We say that an algorithm is an h(k) - FPT -approximation algorithm for the F -Contraction problem, if it runs in FPT time, and on any input (G, k) such that there exists X ⊆ E(G) satisfying G/X ∈ F and | X | ≤ k , it outputs an edge set Y of size at most h(k) ċ k for which G/Y is in F .


2021 ◽  
Vol 87 (3) ◽  
pp. 703-715
Author(s):  
Subin P. Joseph ◽  

A general graph operation is defined and some of its applications are given in this paper. The adjacency spectrum of any graph generated by this operation is given. A method for generating integral graphs using this operation is discussed. Corresponding to any given graph, we can generate an infinite sequence of pair of equienergetic non-cospectral graphs using this graph operation. Given an orderenergetic graph, it is shown that we can construct two different sequences of orderenergetic graphs. A condition for generating orderenergetic graphs from non-orderenergetic graphs are also derived. This method of constructing connected orderenergetic graphs solves one of the open problem stated in the paper by Akbari et al.(2020).


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2224
Author(s):  
Haiping Gao ◽  
Jian Zhu ◽  
Xianyong Li ◽  
Xing Chen

In this paper, several multi-layer-coupled star-composed networks with similar symmetrical structures are defined by using the theory of graph operation. The supra-Laplacian matrix of the corresponding multi-layer networks is obtained according to the master stability equation (MSF). Two important indexes that reflect the synchronizability of these kinds of networks are derived in the case of bounded and unbounded synchronized regions. The relationships among the synchronizability, the number of layers, the length of the paths, the branchings, and the interlayer and intralayer coupling strengths in the two cases are studied. At the same time, the simulation experiments are carried out with the MATLAB software, and the simulated images of the two symmetrical structure networks’ synchronizability are compared. Finally, the factors affecting the synchronizability of multi-layer-coupled star-composed networks are found. On this basis, optimization schemes are given to improve the synchronizability of multi-layer-coupled star-composed networks and the influences of the number of central nodes on the networks’ synchronizability are further studied.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Muhammad Bilal ◽  
Muhammad Kamran Jamil ◽  
Muhammad Waheed ◽  
Abdu Alameri

Graph operations play an important role to constructing complex network structures from simple graphs, and these complex networks play vital roles in different fields such as computer science, chemistry, and social sciences. Computation of topological indices of these complex network structures via graph operation is an important task. In this study, we defined two new variants of graph products, namely, corona join and subdivision vertex join products and investigated exact expressions of the first and second Zagreb indices and first reformulated Zagreb index for these new products.


2021 ◽  
Vol 14 (11) ◽  
pp. 1992-2005 ◽  
Author(s):  
Shixuan Sun ◽  
Yuhang Chen ◽  
Shengliang Lu ◽  
Bingsheng He ◽  
Yuchen Li

As random walk is a powerful tool in many graph processing, mining and learning applications, this paper proposes an efficient in-memory random walk engine named ThunderRW. Compared with existing parallel systems on improving the performance of a single graph operation, ThunderRW supports massive parallel random walks. The core design of ThunderRW is motivated by our profiling results: common RW algorithms have as high as 73.1% CPU pipeline slots stalled due to irregular memory access, which suffers significantly more memory stalls than the conventional graph workloads such as BFS and SSSP. To improve the memory efficiency, we first design a generic step-centric programming model named Gather-Move-Update to abstract different RW algorithms. Based on the programming model, we develop the step interleaving technique to hide memory access latency by switching the executions of different random walk queries. In our experiments, we use four representative RW algorithms including PPR, DeepWalk, Node2Vec and MetaPath to demonstrate the efficiency and programming flexibility of ThunderRW. Experimental results show that ThunderRW outperforms state-of-the-art approaches by an order of magnitude, and the step interleaving technique significantly reduces the CPU pipeline stall from 73.1% to 15.0%.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
G. Muhiuddin ◽  
A. M. Alanazi ◽  
A. R. Kannan ◽  
V. Govindan
Keyword(s):  
On Line ◽  

In the present paper, we introduce the classical mean labeling of graphs and investigate their related properties. Moreover, it is obtained that the line graph operation preserves the classical meanness property for some standard graphs.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1643
Author(s):  
Modjtaba Ghorbani ◽  
Matthias Dehmer ◽  
Frank Emmert-Streib

The orbit polynomial is a new graph counting polynomial which is defined as OG(x)=∑i=1rx|Oi|, where O1, …, Or are all vertex orbits of the graph G. In this article, we investigate the structural properties of the automorphism group of a graph by using several novel counting polynomials. Besides, we explore the orbit polynomial of a graph operation. Indeed, we compare the degeneracy of the orbit polynomial with a new graph polynomial based on both eigenvalues of a graph and the size of orbits.


Author(s):  
Mohammed S. Alsharafi ◽  
Mahioub M. Shubatah ◽  
Abdu Q. Alameri

In this paper, some basic mathematical operation for the second Zagreb indices of graph containing the join and strong product of graph operation, and the rst and second Zagreb indices of complement graph operations such as cartesian product G1 G2, composition G1 G2, disjunction G1 _ G2, symmetric dierence G1 G2, join G1 + G2, tensor product G1  G2, and strong product G1 G2 will be explained. The results are applied to molecular graph of nanotorus and titania nanotubes.


Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 305
Author(s):  
Jeremy C. Adcock ◽  
Sam Morley-Short ◽  
Axel Dahlberg ◽  
Joshua W. Silverstone

Graph states, and the entanglement they posses, are central to modern quantum computing and communications architectures. Local complementation – the graph operation that links all local-Clifford equivalent graph states – allows us to classify all stabiliser states by their entanglement. Here, we study the structure of the orbits generated by local complementation, mapping them up to 9 qubits and revealing a rich hidden structure. We provide programs to compute these orbits, along with our data for each of the 587 orbits up to 9 qubits and a means to visualise them. We find direct links between the connectivity of certain orbits with the entanglement properties of their component graph states. Furthermore, we observe the correlations between graph-theoretical orbit properties, such as diameter and colourability, with Schmidt measure and preparation complexity and suggest potential applications. It is well known that graph theory and quantum entanglement have strong interplay – our exploration deepens this relationship, providing new tools with which to probe the nature of entanglement.


Sign in / Sign up

Export Citation Format

Share Document