Experimental investigation and finite element simulation of AISI 304 during electro discharge machining

Author(s):  
Munmun Bhaumik ◽  
Kalipada Maity

In this paper, a two-dimensional axisymmetric thermal model using finite element method (FEM) has been established for predicting the temperature distribution profile on the work piece during electro discharge machining (EDM) and obtained material removal rate (MRR) from the temperature isotherm. For prediction of MRR, the model utilizes some important features viz. size and shape of the heat source (Gaussian heat distribution), thermal properties of workpiece, amount of heat distribution among the dielectric fluid, workpiece and tool, material flushing efficiency and pulse off/on time, etc. ANSYS software was used for developing the thermal model for the single spark operation. For this investigation, AISI 304 stainless steel and tungsten carbide was used as workpiece and electrode material, respectively. A comparison study has been carried out for theoretical and experimental MRR for the effect of each process parameter viz. gap voltage, pulse on time and peak current. The temperature distribution along the radial and depth direction of the workpiece has been reported. The model was validated by comparing the theoretical MRR with the experimental MRR and found a good correlation between them.

Author(s):  
Hardeep Singh ◽  
Anirban Bhattacharya ◽  
Ajay Batish

Powder mixed electric discharge machining (PMEDM) is one of the modern developments in electric discharge machining (EDM) process. In the present work, finite element modeling has been carried out considering randomly oriented multiple sparks during PMEDM. Transient thermal analysis is done to obtain temperature distribution, volume removal, and proportion of volume removed by melting and evaporation at different current, pulse on time and fraction of heat that enters to work piece. Gradually growing spark behavior and Gaussian distribution of heat source is used to simulate multiple craters. Temperature distribution along radial direction shows peak temperature at center of spark and thereafter a gradual decrease with increase in radial distance. Along depth direction temperature sharply decreases that forms wider craters with shallow depth in PMEDM. Peak temperature and volume removal increases with current more rapidly. Volume removal by melting is much higher than evaporation at lower current settings and with higher current almost equal amount of material is removed by melting and evaporation thus reducing the re-solidification of melted material. Current plays a significant role behind the contribution of material removal by evaporation followed by fraction of heat. Increase in pulse on duration increases the total volume of material removal however does not significantly increase the proportion of volume removal by vaporization.


Author(s):  
Xiang Ling ◽  
Weiwei Peng

The present paper established a non-linear elastic-plastic finite element method to predict the residual compressive stress distribution induced by Laser Peening (LP) in the AISI 304 stainless steel. The two dimensional FEA model considered the dynamic material properties at high strain rate (106/s) and the evaluation of loading conditions. Effects of laser power density, laser spot size, laser pulse duration, multiple LP processes and one/two-sided peening on the compressive stress field in the stainless steel were evaluated for the purpose of optimizing the process. Numerical results have a good agreement with the measurement values by X-ray diffraction method and also show that the magnitude of compressive stress induced by laser peening is greater than the tensile welding residual stress. So, laser peening is an effective method for protecting weldments against stress corrosion crack. The above results provide the basis for studying the mechanism on prevention of stress corrosion cracking in weld joint of type 304 stainless steel by laser peening.


2007 ◽  
Vol 129 (9) ◽  
pp. 1177-1186 ◽  
Author(s):  
L. S. Mayboudi ◽  
A. M. Birk ◽  
G. Zak ◽  
P. J. Bates

Laser transmission welding (LTW) is a relatively new technology for joining plastic parts. This paper presents a three-dimensional (3D) transient thermal model of LTW solved with the finite element method. A lap-joint geometry was modeled for unreinforced polyamide (PA) 6 specimens. This thermal model addressed the heating and cooling stages in a laser welding process with a stationary laser beam. This paper compares the temperature distribution of a lap-joint geometry exposed to a stationary diode laser beam, obtained from 3D thermal modeling with thermal imaging observations. It is shown that the thermal model is capable of accurately predicting the temperature distribution when laser beam scattering during transmission through the polymer is included in the model. The weld dimensions obtained from the model have been compared with the experimental data and are in good agreement.


2012 ◽  
Vol 488-489 ◽  
pp. 1506-1510
Author(s):  
Reza Nosouhi ◽  
Hamid Montazerolghaem

The numerical analysis of the cutting zone average temperature and the temperature distribution of the chip and cutting tool are performed in this paper. To derivate the equations, the conditions of both conventional and horizontal vibration assisted machining are analyzed and the results are compared. The previous finite element results along with the experimental results show good agreement with the numerical results achieved from this research and explain the temperature reduction in the cutting zone. The results clearly show that horizontal vibration assisted machining excels the heat distribution in the tool and chip, which justifies the tool wear reduction in this process.


Author(s):  
L. S. Mayboudi ◽  
A. M. Birk ◽  
G. Zak ◽  
P. J. Bates

Laser transmission welding (LTW) is a relatively new technology for joining plastic parts. This paper presents a three-dimensional (3-D) transient thermal model of LTW solved with the finite element method (FEM). A lap-joint geometry was modelled for unreinforced nylon 6 specimens. This thermal model addressed the heating and cooling stages in a laser welding process with a stationary laser beam. This paper compares the temperature distribution of a lap-joint geometry exposed to a stationary diode laser beam, obtained from 3-D thermal modelling with thermal imaging observations. It is shown that the thermal model is capable of accurately predicting the temperature distribution when laser beam scattering during transmission through the polymer is included in the model. The weld dimensions obtained from the model have been compared with the experimental data and are in good agreement.


Sign in / Sign up

Export Citation Format

Share Document