scholarly journals Epitaxial growth of β-Ga2O3 thin films on Ga2O3 and Al2O3 substrates by using pulsed laser deposition

2019 ◽  
Vol 09 (04) ◽  
pp. 1950032 ◽  
Author(s):  
Yuxin An ◽  
Liyan Dai ◽  
Ying Wu ◽  
Biao Wu ◽  
Yanfei Zhao ◽  
...  

In this work, we have successfully grown high quality epitaxial [Formula: see text]-Ga2O3 thin films on [Formula: see text]-Ga2O3 (100) and Al2O3(0001) substrates using pulsed laser deposition (PLD). By optimizing temperature and oxygen pressure, the best conditions were found to be 650–700∘C and 0.5[Formula: see text]Pa. To further improve the quality of hetero-epitaxial [Formula: see text]-Ga2O3, the sapphire substrates were pretreated for atomic terraced surface by chemical cleaning and high temperature annealing. From the optical transmittance measurements, the films grown at 600–750∘C exhibit a clear absorption edge at deep ultraviolet region around 250–275[Formula: see text]nm wavelength. High resolution transmission electron microscope (HRTEM) images and X-ray diffraction (XRD) patterns demonstrate that [Formula: see text]-Ga2O3(-201)//Al2O3(0001) epitaxial texture dominated the epitaxial oxide films on sapphire substrate, which opens up the possibilities of high power electric devices.

1999 ◽  
Vol 14 (6) ◽  
pp. 2355-2358 ◽  
Author(s):  
M. H. Corbett ◽  
G. Catalan ◽  
R. M. Bowman ◽  
J. M. Gregg

Pulsed laser deposition has been used to make two sets of lead magnesium niobate thin films grown on single-crystal h100j MgO substrates. One set was fabricated using a perovskite-rich target while the other used a pyrochlore-rich target. It was found that the growth conditions required to produce almost 100% perovskite Pb(Mg1/3Nb2/3)O3 (PMN) films were largely independent of target crystallography. Films were characterized crystallographically using x-ray diffraction and plan view transmission electron microscopy, chemically using energy dispersive x-ray analysis, and electrically by fabricating a planar thin film capacitor structure and monitoring capacitance as a function of temperature. All characterization techniques indicated that perovskite PMN thin films had been successfully fabricated.


1995 ◽  
Vol 385 ◽  
Author(s):  
M. Grant Norton ◽  
Wenbiao Jiang ◽  
J. Thomas Dickinson

ABSTRACTThin films of polytetrafluoroethylene have been formed by the pulsed-laser deposition technique. The structure of the films was found to be dependent upon the substrate temperature during deposition. At substrate temperatures from room temperature to 200°C the films were determined, by transmission electron microscopy and X-ray diffraction techniques, to be amorphous. Films formed at higher substrate temperatures were found to contain both amorphous and crystalline components. The data for the crystalline component is consistent with it being highly ordered with the long helical molecular chains aligned parallel to the film-substrate interface plane. The maximum amount of crystalline material occurred when the substrate temperature was close to the melting temperature of the polymer.


2002 ◽  
Vol 720 ◽  
Author(s):  
Costas G. Fountzoulas ◽  
Daniel M. Potrepka ◽  
Steven C. Tidrow

AbstractFerroelectrics are multicomponent materials with a wealth of interesting and useful properties, such as piezoelectricity. The dielectric constant of the BSTO ferroelectrics can be changed by applying an electric field. Variable dielectric constant results in a change in phase velocity in the device allowing it to be tuned in real time for a particular application. The microstructure of the film influences the electronic properties which in turn influences the performance of the film. Ba0.6Sr0.4Ti1-y(A 3+, B5+)yO3 thin films, of nominal thickness of 0.65 μm, were synthesized initially at substrate temperatures of 400°C, and subsequently annealed to 750°C, on LaAlO3 (100) substrates, previously coated with LaSrCoO conductive buffer layer, using the pulsed laser deposition technique. The microstructural and physical characteristics of the postannealed thin films have been studied using x-ray diffraction, scanning electron microscopy, and nano indentation and are reported. Results of capacitance measurements are used to obtain dielectric constant and tunability in the paraelectric (T>Tc) regime.


1995 ◽  
Vol 395 ◽  
Author(s):  
R.D. Vispute ◽  
H. Wu ◽  
K. Jagannadham ◽  
J. Narayan

ABSTRACTAIN thin films have been grown epitaxially on Si(111) and Al2O3(0001) substrates by pulsed laser deposition. These films were characterized by FTIR and UV-Visible, x-ray diffraction, high resolution transmission electron and scanning electron microscopy, and electrical resistivity. The films deposited on silicon and sapphire at 750-800°C and laser energy density of ∼ 2 to 3J/cm2 are epitaxial with an orientational relationship of AIN[0001]║ Si[111], AIN[2 110]║Si[011] and AlN[0001]║Al2O3[0001], AIN[1 2 1 0]║ Al2O3[0110] and AIN[1010] ║ Al2O3[2110]. The both AIN/Si and AIN/Al2O3 interfaces were found to be quite sharp without any indication of interfacial reactions. The absorption edge measured by UV-Visible spectroscopy for the epitaxial AIN film grown on sapphire was sharp and the band gap was found to be 6.1eV. The electrical resistivity of the films was about 5-6×l013Ω-cm with a breakdown field of 5×106V/cm. We also found that the films deposited at higher laser energy densities ≥10J/cm2 and lower temperatures ≤650°C were nitrogen deficient and containing free metallic aluminum which degrade the microstructural, electrical and optical properties of the AIN films


2010 ◽  
Vol 123-125 ◽  
pp. 375-378 ◽  
Author(s):  
Ram Prakash ◽  
Shalendra Kumar ◽  
Chan Gyu Lee ◽  
S.K. Sharma ◽  
Marcelo Knobel ◽  
...  

Ce1-xFexO2 (x=0, 0.01, 0.03 and 0.0 5) thin films were grown by pulsed laser deposition technique on Si and LaAlO3 (LAO) substrates. These films were deposited in vacuum and 200 mTorr oxygen partial pressure for both the substrates. These films were characterized by x-ray diffraction XRD and Raman spectroscopy measurements. XRD results reveal that these films are single phase. Raman results show F2g mode at ~466 cm-1 and defect peak at 489 cm-1 for film that deposited on LAO substrates, full width at half maximum (FWHM) is increasing with Fe doping for films deposited on both the substrates.


2021 ◽  
Vol 19 (10) ◽  
pp. 34-40
Author(s):  
B.Y. Taher ◽  
A.S. Ahmed ◽  
Hassan J. Alatta

In this study, CdO2 (1-X) AlX thin films were prepared by pulsed-laser deposition. The X-ray diffraction patterns reveal that the films were polycrystalline with a cubic structure, and the composition of the material changed from CdO at the target to CdO2 in the deposited thin films. The intensity of the diffraction peak (or the texture factor) decreases with increasing hkl and has a maximum value for the (111) plane, the interplanar distance and diffraction angle has a high deviation from the standard value for the (111) plane and. This deviation is affected by doping concentration and shows its highest deviation at a doping concentration of 0.1 wt.% for the (111) and (200), and the 0.3 and 0.5 wt.% for the (210) and (220) planes, respectively. The crystalline size take a less value at plane has a high texture factor that is (111) plane and decreases with increase the doping concentration.


2013 ◽  
Vol 710 ◽  
pp. 25-28 ◽  
Author(s):  
Xiao Qiang Kou ◽  
Ji Ming Bian ◽  
Zhi Kun Zhang

Vanadium dioxide (VO2) films were grown on c-and m-plane sapphire substrates by pulsed laser deposition (PLD) technique with VO2ceramic target. The VO2films with preferred growth orientation and uniform dense distribution have been achieved on both substrates, as confirmed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The terahertz (THz) transmission properties of VO2thin films were studied by terahertz time-domain spectroscopy (THz-TDS). The results indicate that the THz transmission properties of VO2films are strongly influenced by the sapphire substrate orientation, suggesting that VO2films are ideal material candidates for THz modulation.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 533-535
Author(s):  
J. H. HAO ◽  
J. GAO

We have developed a process to grow SrTiO 3 ( STO ) thin films showing single (110) orientation directly on Si by means of pulsed laser deposition technique. The growth of STO films directly on Si has been described. The crystallinity of the grown STO films was characterized by X-ray diffraction analysis of θ-2θ scan and rocking curve. Our results may be of interest for better understanding of the growth based on the perovskite oxide thin films on silicon materials.


2014 ◽  
Vol 936 ◽  
pp. 282-286
Author(s):  
Ying Wen Duan

Single-crystalline, epitaxial LaFeO3 films with 5 at. % substitution of Pd on the Fe site are grown on (100) SrTiO3 substrate by pulsed-laser deposition technique. The epitaxial orientation relationships are (110)[001]LFPO||(100)[001]STO. X-ray diffraction and transmission electron microscopy reveal that the LFPO films have high structural quality and an atomically sharp LFPO/STO interface. After reduction treatments of as-grown LFPO films, very little Pd escaped the LFPO lattice onto the film surface, the formed Pd (100) particles are oriented epitaxially, and parallel to the LFPO films surface.


2000 ◽  
Vol 658 ◽  
Author(s):  
Trong-Duc Doan ◽  
Cobey Abramowski ◽  
Paul A. Salvador

ABSTRACTThin films of NdNiO3 were grown using pulsed laser deposition on single crystal substrates of [100]-oriented LaAlO3 and SrTiO3. X-ray diffraction and reflectivity, scanning electron microscopy, and atomic force microscopy were used to characterize the chemical, morphological and structural traits of the thin films. Single-phase epitaxial films are grown on LaAlO3 and SrTiO3 at 625°C in an oxygen pressure of 200 mTorr. At higher temperatures, the films partially decompose to Nd2NiO4 and NiO. The films are epitaxial with the (101) planes (orthorhombic Pnma notation) parallel to the substrate surface. Four in-plane orientational variants exist that correspond to the four 90° degenerate orientations of the film's [010] with respect to the in-plane substrate directions. Films are observed to be strained in accordance with the structural mismatch to the underlying substrate, and this leads, in the thinnest films on LaAlO3, to an apparent monoclinic distortion to the unit cell.


Sign in / Sign up

Export Citation Format

Share Document