Modeling of implied volatility surfaces of nifty index options

2019 ◽  
Vol 06 (03) ◽  
pp. 1950028 ◽  
Author(s):  
Mihir Dash

The implied volatility of an option contract is the value of the volatility of the underlying instrument which equates the theoretical option value from an option pricing model (typically, the Black–Scholes[Formula: see text]Merton model) to the current market price of the option. The concept of implied volatility has gained in importance over historical volatility as a forward-looking measure, reflecting expectations of volatility (Dumas et al., 1998). Several studies have shown that the volatilities implied by observed market prices exhibit a pattern very different from that assumed by the Black–Scholes[Formula: see text]Merton model, varying with strike price and time to expiration. This variation of implied volatilities across strike price and time to expiration is referred to as the volatility surface. Empirically, volatility surfaces for global indices have been characterized by the volatility skew. For a given expiration date, options far out-of-the-money are found to have higher implied volatility than those with an exercise price at-the-money. For short-dated expirations, the cross-section of implied volatilities as a function of strike is roughly V-shaped, but has a rounded vertex and is slightly tilted. Generally, this V-shape softens and becomes flatter for longer dated expirations, but the vertex itself may rise or fall depending on whether the term structure of at-the-money volatility is upward or downward sloping. The objective of this study is to model the implied volatility surfaces of index options on the National Stock Exchange (NSE), India. The study employs the parametric models presented in Dumas et al. (1998); Peña et al. (1999), and several subsequent studies to model the volatility surfaces across moneyness and time to expiration. The present study contributes to the literature by studying the nature of the stationary point of the implied volatility surface and by separating the in-the-money and out-of-the-money components of the implied volatility surface. The results of the study suggest that an important difference between the implied volatility surface of index call and put options: the implied volatility surface of index call options was found to have a minimum point, while that of index put options was found to have a saddlepoint. The results of the study also indicate the presence of a “volatility smile” across strike prices, with a minimum point in the range of 2.3–9.0% in-the-money for index call options and of 10.7–29.3% in-the-money for index put options; further, there was a jump in implied volatility in the transition from out-of-the-moneyness to in-the-moneyness, by 10.0% for index call options and about 1.9% for index put options.

2016 ◽  
Vol 19 (05) ◽  
pp. 1650030 ◽  
Author(s):  
RICHARD JORDAN ◽  
CHARLES TIER

The problem of fast pricing, hedging, and calibrating of derivatives is considered when the underlying does not follow the standard Black–Scholes–Merton model but rather a mean-reverting and deterministic volatility model. Mean-reverting models are often used for volatility, commodities, and interest-rate derivatives, while the deterministic volatility accounts for the nonconstant implied volatility. Trading desks often use numerical methods for real-time pricing, hedging, and calibration when implementing such models. A more efficient alternative is to use an analytic formula, even if only approximate. A systematic approach is presented, based on the WKB or ray method, to derive asymptotic approximations to the density function that can be used to derive simple formulas for pricing derivatives. Such approximations are usually only valid away from any boundaries, yet for some derivatives the values of the underlying near the boundaries are needed such as when interest rates are very low or for pricing put options. Hence, the ray approximation may not yield acceptable results. A new asymptotic approximation near boundaries is derived, which is shown to be of value for pricing certain derivatives. The results are illustrated by deriving new analytic approximations for European derivatives and their high accuracy is demonstrated numerically.


2014 ◽  
Vol 17 (01) ◽  
pp. 1450002 ◽  
Author(s):  
MASAAKI FUKASAWA

We revisit robust replication theory of volatility derivatives and introduce a broader class which may be considered as the second generation of volatility derivatives. One of them is a swap contract on the quadratic covariation between an asset price and the model-free implied variance (MFIV) of the asset. It can be replicated in a model-free manner and its fair strike may be interpreted as a model-free measure for the covariance of the asset price and the realized variance. The fair strike is given in a remarkably simple form, which enable to compute it from the Black–Scholes implied volatility surface. We call it the model-free implied leverage (MFIL) and give several characterizations. In particular, we show its simple relation to the Black–Scholes implied volatility skew by an asymptotic method. Further to get an intuition, we demonstrate some explicit calculations under the Heston model. We report some empirical evidence from the time series of the MFIV and MFIL of the Nikkei stock average.


Options are one of the products in financial derivatives, which gives the rights to buy and sell the product to an option holder in pre-fixed price which known as the strike price or exercise price at certain periods. Options contract was existed in various countries for long time, but it became very popular among the investors when the Fisher Black, Myron Scholes and Robert Merton were introduced the Black-Scholes Model in the year of 1973. This model was formerly developed by these three economists who were also receiving the Nobel prize for finding this innovative model. This model is mainly used to deal with the theoretical pricing challenge in options price determination. In India the trading in Index Options commenced on 4th June 2001 and Options on individual securities commenced on 2nd July 2001. There are many types in options contracts like stock options; Index options, weather options, real options and etc. This study has mainly been focusing on Nifty 50 index options which are effectively trade at NSE. This paper goes to describe about the importance of options pricing and how the BSM model has effectively used to find the optimum price of the theoretical value of call and put options.


2009 ◽  
Vol 12 (04) ◽  
pp. 427-441 ◽  
Author(s):  
MICHAEL ROPER ◽  
MAREK RUTKOWSKI

We examine the asymptotic behaviour of the call price surface and the associated Black-Scholes implied volatility surface in the small time to expiry limit under the condition of no arbitrage. In the final section, we examine a related question of existence of a market model with non-convergent implied volatility. We show that there exist arbitrage free markets in which implied volatility may fail to converge to any value, finite or infinite.


Sign in / Sign up

Export Citation Format

Share Document