The Odd Log-Logistic Geometric Normal Regression Model with Applications
In several applications, the distribution of the data is frequently unimodal, asymmetric or bimodal. The regression models commonly used for applications to data with real support are the normal, skew normal, beta normal and gamma normal, among others. We define a new regression model based on the odd log-logistic geometric normal distribution for modeling asymmetric or bimodal data with support in [Formula: see text], which generalizes some known regression models including the widely known heteroscedastic linear regression. We adopt the maximum likelihood method for estimating the model parameters and define diagnostic measures to detect influential observations. For some parameter settings, sample sizes and different systematic structures, various simulations are performed to verify the adequacy of the estimators of the model parameters. The empirical distribution of the quantile residuals is investigated and compared with the standard normal distribution. We prove empirically the usefulness of the proposed models by means of three applications to real data.