A Geometric Complementarity-Based Tool for Protein–Protein Docking
The computationally hard protein–protein complex structure prediction problem is continuously fascinating to the scientific community due to its biological impact. The field has witnessed the application of geometric algorithms, randomized algorithms, and evolutionary algorithms to name a few. These techniques improve either the searching or scoring phase. An effective searching strategy does not generate a large conformation space that perhaps demands computational power. Another determining factor is the parameter chosen for score calculation. The proposed method is an attempt to curtail the conformations by limiting the search procedure to probable regions. In this method, partial derivatives are calculated on the coarse-grained representation of the surface residues to identify the optimal points on the protein surface. Contrary to the existing geometric-based algorithms that align the convex and concave regions of both proteins, this method aligns the concave regions of the receptor with convex regions of the ligand only and thus reduces the size of conformation space. The method’s performance is evaluated using the 55 newly added targets in Protein–Protein Docking Benchmark v 5 and is found to be successful for around 47% of the targets.