Crystal Field Potential in Rare Earth Metals with dhcp Structure

1983 ◽  
Vol 52 (12) ◽  
pp. 4048-4051
Author(s):  
Tsuyoshi Murao ◽  
L. Couture
1975 ◽  
Vol 35 (18) ◽  
pp. 1231-1233 ◽  
Author(s):  
A. H. Millhouse ◽  
A. Furrer

2005 ◽  
Vol 866 ◽  
Author(s):  
David Carey

AbstractThe g values of rare earth ions obtained from either paramagnetic resonance or Zeeman measurements are often used to interpret the location and/or environment surrounding rare earth ions. In the case of centres with cubic symmetry the g value can be used to distinguish between substitutional and interstitial sites. For centres with less than cubic symmetry the average g value, taken as 1/3 trace of the g tensor, is often used as an indication of the lattice location and/or a measure of the strength of the local crystal field. This approach is widely used but is based on the assumption that the non-cubic terms in the total crystal field potential are small compared with the cubic crystal field. In this paper we have explored this assumption by calculating the principal g values in axial crystal fields for the Er3+ ion. We examine the limits over which the average g value approach is valid. Comparison is made with published results.


1968 ◽  
Vol 46 (12) ◽  
pp. 1499-1501 ◽  
Author(s):  
A. D. B. Woods

Expressions which arise in the interpretation of inelastic neutron scattering from hexagonal close packed rare earth metals in the paramagnetic phase are presented and discussed. It is concluded that the fourth- and sixth-order terms which occur in the Hamiltonian describing the crystal field can, in some cases, be as important as the leading second-order term.


MRS Bulletin ◽  
1999 ◽  
Vol 24 (9) ◽  
pp. 27-32 ◽  
Author(s):  
T. Gregorkiewicz ◽  
J.M. Langer

Semiconductors doped with rare-earth (RE) elements have attracted a lot of attention as alternative materials for producing electrically pumpe d semiconductor lasers whose emission wavelength is very weakly dependent on temperature. This prospect is especially attractive in the case of indirect-gap Silicon, whose photonic applications as the material for light emitters still remain more of a hope than a reality. In view of a desirable emission wavelength at 1.5 μm, a lot of research has concentrated on Si:Er (see Coffa et al. for a recent review). It is generally recognized that doping with Er ions presents one of the most promising approaches to Silicon photonics. However, despiteintensive investigations, stimulated emission has not been conclusively demonstrated for Si.Er or for any other RE-doped semiconductor. This is in striking contrast to optical amplifiers and lasers based on various erbium-doped glasses. In this article, which builds on recent articles in MRS Bulletin on Silicon photonics, we will address the issues relevant to efficient light generation by semiconductors doped with RE elements in general, and specifically by Si:Er-based structures.The intraimpurity electronic structure of RE ions is dominate d by electron-electron and spin-orbit interactions within the 4f shell. In the case of Er3+, they produce separated J-multiplets with 4I15/2 and 4I13/2 as the ground and the lowest-lying excited states, respectively. Due to the effective Screening of 4f electrons by the outer electron Shells, the host has a very limited influence and changes only slightly the relative positions of the levels. Depending on a particular site symmetry, the even terms of the crystal field split the free-ion J-multiplets into the Stark components typically by several meV for the ground State. The energy-level diagram of an Er3+ ion in a cubic crystal field is shown in Figure 1, where the energy transfer paths relevant for Si:Er are also schematically indicated. The odd terms of the crystal field potential admix the states of opposite parity to the 4f11 configuration of the Er3+ ion, thereby introducing a certain degree of electric-dipole strength into the otherwise forbidden intra-4f-shell transitions. This effect enhance s slightly the magnetic-dipole strength of the 4I15/2 ↔ 4I13/2 transition and is host- and site-dependent. There-fore, Er-related center s of different microstructure can be fairly easily identified.


Sign in / Sign up

Export Citation Format

Share Document