site symmetry
Recently Published Documents


TOTAL DOCUMENTS

456
(FIVE YEARS 48)

H-INDEX

35
(FIVE YEARS 4)

2022 ◽  
Vol 375 ◽  
pp. 115835
Author(s):  
Davis Zavickis ◽  
Guntars Zvejnieks ◽  
Andrei Chesnokov ◽  
Denis Gryaznov

2022 ◽  
Vol 241 ◽  
pp. 118429
Author(s):  
Andreas Herrmann ◽  
Elizabeth Tsekrekas ◽  
Doris Möncke ◽  
Alexis G. Clare
Keyword(s):  

Author(s):  
Makoto Tokuda ◽  
Kunio Yubuta ◽  
Toetsu Shishido ◽  
Kazumasa Sugiyama

The crystal structures of the rare-earth (RE) trirhodium diborides praseodymium trirhodium diboride, PrRh3B2, neodymium trirhodium diboride, NdRh3B2, and samarium trirhodium diboride, SmRh3B2, were refined on the basis of single-crystal X-ray diffraction data. The crystal chemistry of RERh3B2 (RE: Pr, Nd, and Sm) compounds has previously been analyzed mainly on the basis of powder samples [Ku et al. (1980). Solid State Commun. 35, 91–96], and no structural investigation by single-crystal X-ray diffraction has been reported so far. The crystal structures of the three hexagonal RERh3B2 compounds are isotypic with that of CeRh3B2; RE, Rh and B sites are situated on special positions with site symmetry 6/mmm (Wyckoff position 1a), mmm (3g) and \overline{6}m2 (2c), respectively. In comparison with the previous powder X-ray study of hexagonal RERh3B2, the present redetermination against single-crystal X-ray data has allowed for the modeling of all atoms with anisotropic displacement parameters (ADPs). The ADPs of the Rh atom in each of the structures result in an elongated displacement ellipsoid in the direction of the stacking of the Rh kagomé-type layer. The features of obtained ADPs of atoms are discussed in relation to RERh3B2-type and analogous structures.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1372
Author(s):  
Tamara Đorđević ◽  
Ljiljana Karanović ◽  
Marko Jagodič ◽  
Zvonko Jagličić

In this study, a new cobalt arsenate belonging to the alluaudite supergroup compounds with the general formula of Co3(AsO4)0.5+x(HAsO4)2−x(H2AsO4)0.5+x[(H,□)0.5(H2O,H3O)0.5]2x+ (denoted as CoAsAllu) was synthesized under hydrothermal conditions. Its crystal structure was determined by a room-temperature single-crystal X-ray diffraction analysis: space group C2/c, a = 11.6978(8), b = 12.5713(7), c = 6.7705(5) Å, β = 113.255(5)°, V = 914.76(11) Å3, Z = 2 for As6H8Co6O25. It represents a new member of alluaudite-like protonated arsenates and the first alluaudite-like phase showing both protonation of the tetrahedral site and presence of the H2O molecules in the channels. In the asymmetric unit of CoAsAllu, one of the two Co, one of the two As and one of the seven O atoms lie at 4e special positions (site symmetry 2). The crystal structure consists of the infinite edge-shared CoO6 octahedra chains, running parallel to the [101¯] direction. The curved chains are interconnected by [(As1O4)0.5(H2As1O4)0.5]2− and [HAs2O4]2− tetrahedra forming a heteropolyhedral 3D open framework with two types of parallel channels. Both channels run along the c-axis and are located at the positions (1/2, 0, z) and (0, 0, z), respectively. The H2 and H4 hydrogen atoms of O2H2 and O4H4 hydroxyl groups are situated in channel 1, while the uncoordinated water molecule H2O7 at half-occupied 4e special positions and hydrogen atoms of O6H6 hydroxyl group were found in channel 2. The results of the magnetic investigations confirm the quasi one-dimensional structure of divalent cobalt ions. They are antiferromagnetically coupled with the intrachain interaction parameter of J ≈ −8 cm−1 and interchain parameter of J’ ≈ −2 cm−1 that become effective below the Néel temperature of 3.4 K.


Author(s):  
Takashi Mochiku ◽  
Yoshitaka Matsushita ◽  
Nikola Subotić ◽  
Takanari Kashiwagi ◽  
Kazuo Kadowaki

RhPb2 (rhodium dilead) is a superconductor crystallizing in the CuAl2 structure type (space group I4/mcm). The Rh and Pb atoms are located at the 4a (site symmetry 422) and 8h (m.2m) sites, respectively. The crystal structure is composed of [RhPb8] antiprisms, which share their square faces along the c axis and the edges in the direction perpendicular to the c axis. We have succeeded in growing single crystals of RhPb2 and have re-determined the crystal structure on basis of single-crystal X-ray diffraction data. In comparison with the previous structure studies using powder X-ray diffraction data [Wallbaum (1943). Z. Metallkd. 35, 218–221; Havinga et al. (1972). J. Less-Common Met. 27, 169–186], the current structure analysis of RhPb2 leads to more precise unit-cell parameters and fractional coordinates, together with anisotropic displacement parameters for the two atoms. In addition and likewise different from the previous studies, we have found a slight deficiency of Rh in RhPb2, leading to a refined formula of Rh0.950 (9)Pb2.


Author(s):  
Igor V. Zatovsky ◽  
Nataliia Yu. Strutynska ◽  
Ivan V. Ogorodnyk ◽  
Vyacheslav N. Baumer ◽  
Nickolai S. Slobodyanik ◽  
...  

Single crystals of the langbeinite-type phosphates K1.65Na0.35TiFe(PO4)3 and K0.97Na1.03Ti1.26Fe0.74(PO4)3 were grown by crystallization from high-temperature self-fluxes in the system Na2O–K2O–P2O5–TiO2–Fe2O3 using fixed molar ratios of (Na+K):P = 1.0, Ti:P = 0.20 and Na:K = 1.0 or 2.0 over the temperature range 1273–953 K. The three-dimensional framework of the two isotypic phosphates are built up from [(Ti/Fe)2(PO4)3] structure units containing two mixed [(Ti/Fe)O6] octahedra (site symmetry 3) connected via three bridging PO4 tetrahedra. The potassium and sodium cations share two different sites in the structure that are located in the cavities of the framework. One of these sites has nine and the other twelve surrounding O atoms.


Author(s):  
Michael Ketter ◽  
Matthias Weil

Tin(IV) trioxidotellurate(IV), SnTe3O8, is a member of the isotypic M IVTeIV 3O8 (M = Ti, Zr, Hf, Sn) series crystallizing with eight formula units per unit cell in space group Ia\overline{3}. In comparison with the previous crystal structure model of SnTe3O8 based on powder X-ray diffraction data [Meunier & Galy (1971). Acta Cryst. B27, 602–608], the current model based on single-crystal X-ray data is improved in terms of precision and accuracy. Nearly regular [SnO6] octahedra (Sn site symmetry .\overline{3}.) are situated in the voids of an oxidotellurate(IV) framework built up by corner-sharing [TeO4] bisphenoids (Te site symmetry 2..). A quantitative structural comparison revealed a very high degree of similarity for the structures with M = Ti, Zr, Sn in the M IVTe3O8 series.


Author(s):  
Igor V. Zatovsky ◽  
Ivan V. Ogorodnyk ◽  
Vyacheslav N. Baumer ◽  
Ivan D. Zhilyak ◽  
Ruslana V. Horda ◽  
...  

Cubic crystals of tripotassium aluminium (or gallium) nitridotriphosphate, K3 M III(PO3)3N (M III = Al, Ga), were grown by application of the self-flux method. In their isostructural crystal structures, all metal cations and the N atom occupy special positions with site symmetry 3, while the P and O atoms are situated in general positions. The three-dimensional framework of these oxidonitridophosphates is built up from [M IIIO6] octahedra linked together via (PO3)3N groups. The latter are formed from three PO3N tetrahedra sharing a common N atom. The coordination environments of the three potassium cations are represented by two types of polyhedra, viz. KO9 for one and KO9N for the other two cations. An unusual tetradentate type of coordination for the latter potassium cations by the (PO3)3N6– anion is observed. These K3 M III(PO3)3N (M III = Al, Ga) compounds are isostructural with the Na3 M III(PO3)3N (M III = Al, V, Ti) compounds.


Author(s):  
Christoph Krebs ◽  
Magdalena Ceglarska ◽  
Christian Näther

The crystal structure of the title solvated coordination compound, [Co(NCS)2(C6H12N4)2(H2O)2]·2C6H12N4·2C2H3N, consists of discrete complexes in which the Co2+ cations (site symmetry \overline{1}) are sixfold coordinated by two N-bonded thiocyanate anions, two water molecules and two hexamethylenetetramine (HMT) molecules to generate distorted trans-CoN4O2 octahedra. The discrete complexes are each connected by two HMT solvate molecules into chains via strong O—H...N hydrogen bonds. These chains are further linked by additional O—H...N and C—H...N and C—H...S hydrogen bonds into a three-dimensional network. Within this network, channels are formed that propagate along the c-axis direction and in which additional acetonitrile solvent molecules are embedded, which are hydrogen bonded to the network. The CN stretching vibration of the thiocyanate ion occurs at 2062 cm−1, which is in agreement with the presence of N-bonded anionic ligands. XRPD investigations prove the formation of the title compound as the major phase accompanied by a small amount of a second unknown phase.


Sign in / Sign up

Export Citation Format

Share Document