A technology mapping method based on perfect and semi-perfect matchings

Author(s):  
M. Crastes ◽  
K. Sakouti ◽  
G. Saucier
Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1171 ◽  
Author(s):  
Marcin Kubica ◽  
Dariusz Kania

The paper focuses on the methodology of designing a cyber physical systems (CPS) physical layer using programmable devices. The CPS physical layer can be implemented in programmable devices, which leads to a reduction in their costs and increases their versatility. One of the groups of programmable devices are complex programmable logic devices (CPLDs), which are great for energy-saving, low-cost implementations but requiring flexibility. It becomes necessary to develop mathematical CPS design methods focused on CPLD. This paper presents an original technology mapping method for digital circuits in programmable array logic (PAL)-based CPLDs. The idea is associated with the process of multilevel optimization of circuits dedicated to minimization of the area of a final solution. In the technology mapping process, the method of a multioutput function was used in the graph of outputs form. This method is well known from previous papers and proposes optimization of a basic form of the graph of outputs to enable better use of the resources of a programmable structure. The possibilities for the graph of outputs were expanded in the form of sequential circuits. This work presents a new form of a graph that describes the process of mapping and is known as the graph of excitations and outputs. This graph enables effective technology mapping of sequential circuits. The paper presents a series of experiments that prove the efficiency of the proposed methods for technology mapping. Experiments were conducted for various sizes of PAL-based logic blocks and commercially available CPLDs. The presented results indicate the possibility of more effective implementation of the CPS physical layer.


2016 ◽  
Vol 17 (3) ◽  
pp. 243-250 ◽  
Author(s):  
Alicja E. Gudanowska

The purpose of the article was to exhibit the technology mapping method as one of the methods which may be used in foresight research. Foresight studies was described in the context of technology as well as technology analysis. The main part of the article is the presentation of an original proposal of a technology mapping method enabling to diagnose the current state of technology. The execution of the method should allow to maximise the resources of knowledge on specific technologies. A list of technological knowledge base elements which might emerge as a result of the process was also described.


Author(s):  
Jose-Maria Carazo ◽  
I. Benavides ◽  
S. Marco ◽  
J.L. Carrascosa ◽  
E.L. Zapata

Obtaining the three-dimensional (3D) structure of negatively stained biological specimens at a resolution of, typically, 2 - 4 nm is becoming a relatively common practice in an increasing number of laboratories. A combination of new conceptual approaches, new software tools, and faster computers have made this situation possible. However, all these 3D reconstruction processes are quite computer intensive, and the middle term future is full of suggestions entailing an even greater need of computing power. Up to now all published 3D reconstructions in this field have been performed on conventional (sequential) computers, but it is a fact that new parallel computer architectures represent the potential of order-of-magnitude increases in computing power and should, therefore, be considered for their possible application in the most computing intensive tasks.We have studied both shared-memory-based computer architectures, like the BBN Butterfly, and local-memory-based architectures, mainly hypercubes implemented on transputers, where we have used the algorithmic mapping method proposed by Zapata el at. In this work we have developed the basic software tools needed to obtain a 3D reconstruction from non-crystalline specimens (“single particles”) using the so-called Random Conical Tilt Series Method. We start from a pair of images presenting the same field, first tilted (by ≃55°) and then untilted. It is then assumed that we can supply the system with the image of the particle we are looking for (ideally, a 2D average from a previous study) and with a matrix describing the geometrical relationships between the tilted and untilted fields (this step is now accomplished by interactively marking a few pairs of corresponding features in the two fields). From here on the 3D reconstruction process may be run automatically.


Sign in / Sign up

Export Citation Format

Share Document