scholarly journals Simplification of array access patterns for compiler optimizations

Author(s):  
Yunheung Paek ◽  
Jay Hoeflinger ◽  
David Padua
1998 ◽  
Vol 33 (5) ◽  
pp. 60-71 ◽  
Author(s):  
Yunheung Paek ◽  
Jay Hoeflinger ◽  
David Padua

2009 ◽  
Vol 29 (5) ◽  
pp. 1401-1404
Author(s):  
Ming SUN ◽  
Bo CHEN ◽  
Ming-tian ZHOU
Keyword(s):  

2021 ◽  
Vol 31 (2) ◽  
pp. 1-28
Author(s):  
Gopinath Chennupati ◽  
Nandakishore Santhi ◽  
Phill Romero ◽  
Stephan Eidenbenz

Hardware architectures become increasingly complex as the compute capabilities grow to exascale. We present the Analytical Memory Model with Pipelines (AMMP) of the Performance Prediction Toolkit (PPT). PPT-AMMP takes high-level source code and hardware architecture parameters as input and predicts runtime of that code on the target hardware platform, which is defined in the input parameters. PPT-AMMP transforms the code to an (architecture-independent) intermediate representation, then (i) analyzes the basic block structure of the code, (ii) processes architecture-independent virtual memory access patterns that it uses to build memory reuse distance distribution models for each basic block, and (iii) runs detailed basic-block level simulations to determine hardware pipeline usage. PPT-AMMP uses machine learning and regression techniques to build the prediction models based on small instances of the input code, then integrates into a higher-order discrete-event simulation model of PPT running on Simian PDES engine. We validate PPT-AMMP on four standard computational physics benchmarks and present a use case of hardware parameter sensitivity analysis to identify bottleneck hardware resources on different code inputs. We further extend PPT-AMMP to predict the performance of a scientific application code, namely, the radiation transport mini-app SNAP. To this end, we analyze multi-variate regression models that accurately predict the reuse profiles and the basic block counts. We validate predicted SNAP runtimes against actual measured times.


2021 ◽  
Vol 13 (3) ◽  
pp. 76
Author(s):  
Quintino Francesco Lotito ◽  
Davide Zanella ◽  
Paolo Casari

The pervasiveness of online social networks has reshaped the way people access information. Online social networks make it common for users to inform themselves online and share news among their peers, but also favor the spreading of both reliable and fake news alike. Because fake news may have a profound impact on the society at large, realistically simulating their spreading process helps evaluate the most effective countermeasures to adopt. It is customary to model the spreading of fake news via the same epidemic models used for common diseases; however, these models often miss concepts and dynamics that are peculiar to fake news spreading. In this paper, we fill this gap by enriching typical epidemic models for fake news spreading with network topologies and dynamics that are typical of realistic social networks. Specifically, we introduce agents with the role of influencers and bots in the model and consider the effects of dynamical network access patterns, time-varying engagement, and different degrees of trust in the sources of circulating information. These factors concur with making the simulations more realistic. Among other results, we show that influencers that share fake news help the spreading process reach nodes that would otherwise remain unaffected. Moreover, we emphasize that bots dramatically speed up the spreading process and that time-varying engagement and network access change the effectiveness of fake news spreading.


1994 ◽  
Vol 21 (1) ◽  
pp. 27-45 ◽  
Author(s):  
S. Hiranandani ◽  
K. Kennedy ◽  
C.W. Tseng

Sign in / Sign up

Export Citation Format

Share Document