scholarly journals Graph Neural Networks for Fast Node Ranking Approximation

2021 ◽  
Vol 15 (5) ◽  
pp. 1-32
Author(s):  
Sunil Kumar Maurya ◽  
Xin Liu ◽  
Tsuyoshi Murata

Graphs arise naturally in numerous situations, including social graphs, transportation graphs, web graphs, protein graphs, etc. One of the important problems in these settings is to identify which nodes are important in the graph and how they affect the graph structure as a whole. Betweenness centrality and closeness centrality are two commonly used node ranking measures to find out influential nodes in the graphs in terms of information spread and connectivity. Both of these are considered as shortest path based measures as the calculations require the assumption that the information flows between the nodes via the shortest paths. However, exact calculations of these centrality measures are computationally expensive and prohibitive, especially for large graphs. Although researchers have proposed approximation methods, they are either less efficient or suboptimal or both. We propose the first graph neural network (GNN) based model to approximate betweenness and closeness centrality. In GNN, each node aggregates features of the nodes in multihop neighborhood. We use this feature aggregation scheme to model paths and learn how many nodes are reachable to a specific node. We demonstrate that our approach significantly outperforms current techniques while taking less amount of time through extensive experiments on a series of synthetic and real-world datasets. A benefit of our approach is that the model is inductive, which means it can be trained on one set of graphs and evaluated on another set of graphs with varying structures. Thus, the model is useful for both static graphs and dynamic graphs. Source code is available at https://github.com/sunilkmaurya/GNN_Ranking

2015 ◽  
Vol 804 ◽  
pp. 321-324
Author(s):  
Sunantha Sodsee ◽  
Maytiyanin Komkhao ◽  
Wolfgang A. Halang

Preventing power transmission failures in its network of electrical terminal stations is a major concern for the infrastructure of the Thai capital Bangkok and its vicinity. Towards this objective the present study aims to analyse the network and its reliability under conditions of increased demand. The analysis is based on a representation of the network as a graph allowing to identify the most important terminal stations by graph-theoretical terms. These are, in particular, the centrality measures Degree Centrality (DC) giving the number of a station’s one-hop neighbours, Closeness Centrality (CC) describing the efficiency of power transmission from one station to others, shortest-path Betweenness Centrality (BC) indicating the number of a station’s occurrences on the shortest paths between indirectly connected stations, Hub describing stations that are connected to a large number of important stations, and Authority indicating the stations that connect many important stations. Experimental results revealed that the Bangkok Noi station was most significant when the measures DC, CC and BC were considered and, on the other hand, that the North Bangkok station was vital in terms of CC, Hub and Authority. Therefore, these stations need to be closely monitored and their operation to be carried out with extreme care in order to prevent the occurrence of power transmission failures within the Bangkok metropolitan area.


2021 ◽  
Vol 12 (4) ◽  
pp. 118-131
Author(s):  
Jaya Krishna Raguru ◽  
Devi Prasad Sharma

The problem of identifying a seed set composed of K nodes that increase influence spread over a social network is known as influence maximization (IM). Past works showed this problem to be NP-hard and an optimal solution to this problem using greedy algorithms achieved only 63% of spread. However, this approach is expensive and suffered from performance issues like high computational cost. Furthermore, in a network with communities, IM spread is not always certain. In this paper, heterogeneous influence maximization through community detection (HIMCD) algorithm is proposed. This approach addresses initial seed nodes selection in communities using various centrality measures, and these seed nodes act as sources for influence spread. A parallel influence maximization is applied with the aid of seed node set contained in each group. In this approach, graph is partitioned and IM computations are done in a distributed manner. Extensive experiments with two real-world datasets reveals that HCDIM achieves substantial performance improvement over state-of-the-art techniques.


2020 ◽  
Vol 14 (3) ◽  
pp. 309-320
Author(s):  
Sena Ariesandy ◽  
Ema Carnia ◽  
Herlina Napitupulu

The Millennium Development Goals (MDGs), which began in 2000 with 8 goal points, have not been able to solve the global problems. The MDGs were developed into Sustainable Development Goals (SDGs) in 2015 with 17 targeted goal points achieved in 2030. Until now, methods for determining the priority of SDGs are still attractive to researchers. Centrality is one of the tools in determining the priority goal points on a network by using graph theory. There are four measurements of centrality used in this paper, namely degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. The calculation results obtained from the four measurements are compared, analyzed, to conclud which goal points are the most prior and the least prior. From the results obtained the most priority goal points in Sustainable Development Goals.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Takayasu Fushimi ◽  
Seiya Okubo ◽  
Kazumi Saito

Abstract In this study, we propose novel centrality measures considering multiple perspectives of nodes or node groups based on the facility location problem on a spatial network. The conventional centrality exclusively quantifies the global properties of each node in a network such as closeness and betweenness, and extracts nodes with high scores as important nodes. In the context of facility placement on a network, it is desirable to place facilities at nodes with high accessibility from residents, that is, nodes with a high score in closeness centrality. It is natural to think that such a property of a node changes when the situation changes. For example, in a situation where there are no existing facilities, it is expected that the demand of residents will be satisfied by opening a new facility at the node with the highest accessibility, however, in a situation where there exist some facilities, it is necessary to open a new facility some distance from the existing facilities. Furthermore, it is natural to consider that the concept of closeness differs depending on the relationship with existing facilities, cooperative relationships and competitive relationships. Therefore, we extend a concept of centrality so as to considers the situation where one or more nodes have already been selected belonging to one of some groups. In this study, we propose two measures based on closeness centrality and betweenness centrality as behavior models of people on a spatial network. From our experimental evaluations using actual urban street network data, we confirm that the proposed method, which introduces the viewpoints of each group, shows that there is a difference in the important nodes of each group viewpoint, and that the new store location can be predicted more accurately.


2018 ◽  
Author(s):  
Andrea Costa ◽  
Ana M. Martín González ◽  
Katell Guizien ◽  
Andrea M. Doglioli ◽  
José María Gómez ◽  
...  

Representing data as networks cuts across all sub-disciplines in ecology and evolutionary biology. Besides providing a compact representation of the interconnections between agents, network analysis allows the identification of especially important nodes, according to various metrics that often rely on the calculation of the shortest paths connecting any two nodes. While the interpretation of a shortest paths is straightforward in binary, unweighted networks, whenever weights are reported, the calculation could yield unexpected results. We analyzed 129 studies of ecological networks published in the last decade and making use of shortest paths, and discovered a methodological inaccuracy related to the edge weights used to calculate shortest paths (and related centrality measures), particularly in interaction networks. Specifically, 49% of the studies do not report sufficient information on the calculation to allow their replication, and 61% of the studies on weighted networks may contain errors in how shortest paths are calculated. Using toy models and empirical ecological data, we show how to transform the data prior to calculation and illustrate the pitfalls that need to be avoided. We conclude by proposing a five-point check-list to foster best-practices in the calculation and reporting of centrality measures in ecology and evolution studies.


Computers ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 115
Author(s):  
Péter Marjai ◽  
Bence Szabari ◽  
Attila Kiss

Graphs can be found in almost every part of modern life: social networks, road networks, biology, and so on. Finding the most important node is a vital issue. Up to this date, numerous centrality measures were proposed to address this problem; however, each has its drawbacks, for example, not scaling well on large graphs. In this paper, we investigate the ranking efficiency and the execution time of a method that uses graph clustering to reduce the time that is needed to define the vital nodes. With graph clustering, the neighboring nodes representing communities are selected into groups. These groups are then used to create subgraphs from the original graph, which are smaller and easier to measure. To classify the efficiency, we investigate different aspects of accuracy. First, we compare the top 10 nodes that resulted from the original closeness and betweenness methods with the nodes that resulted from the use of this method. Then, we examine what percentage of the first n nodes are equal between the original and the clustered ranking. Centrality measures also assign a value to each node, so lastly we investigate the sum of the centrality values of the top n nodes. We also evaluate the runtime of the investigated method, and the original measures in plain implementation, with the use of a graph database. Based on our experiments, our method greatly reduces the time consumption of the investigated centrality measures, especially in the case of the Louvain algorithm. The first experiment regarding the accuracy yielded that the examination of the top 10 nodes is not good enough to properly evaluate the precision. The second experiment showed that the investigated algorithm in par with the Paris algorithm has around 45–60% accuracy in the case of betweenness centrality. On the other hand, the last experiment resulted that the investigated method has great accuracy in the case of closeness centrality especially in the case of Louvain clustering algorithm.


Author(s):  
Jing Huang ◽  
Jie Yang

Hypergraph, an expressive structure with flexibility to model the higher-order correlations among entities, has recently attracted increasing attention from various research domains. Despite the success of Graph Neural Networks (GNNs) for graph representation learning, how to adapt the powerful GNN-variants directly into hypergraphs remains a challenging problem. In this paper, we propose UniGNN, a unified framework for interpreting the message passing process in graph and hypergraph neural networks, which can generalize general GNN models into hypergraphs. In this framework, meticulously-designed architectures aiming to deepen GNNs can also be incorporated into hypergraphs with the least effort. Extensive experiments have been conducted to demonstrate the effectiveness of UniGNN on multiple real-world datasets, which outperform the state-of-the-art approaches with a large margin. Especially for the DBLP dataset, we increase the accuracy from 77.4% to 88.8% in the semi-supervised hypernode classification task. We further prove that the proposed message-passing based UniGNN models are at most as powerful as the 1-dimensional Generalized Weisfeiler-Leman (1-GWL) algorithm in terms of distinguishing non-isomorphic hypergraphs. Our code is available at https://github.com/OneForward/UniGNN.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ilkka Kivimäki ◽  
Bertrand Lebichot ◽  
Jari Saramäki ◽  
Marco Saerens

Sign in / Sign up

Export Citation Format

Share Document