scholarly journals Approximating Geometric Knapsack via L-packings

2021 ◽  
Vol 17 (4) ◽  
pp. 1-67
Author(s):  
Waldo Gálvez ◽  
Fabrizio Grandoni ◽  
Salvatore Ingala ◽  
Sandy Heydrich ◽  
Arindam Khan ◽  
...  

We study the two-dimensional geometric knapsack problem, in which we are given a set of n axis-aligned rectangular items, each one with an associated profit, and an axis-aligned square knapsack. The goal is to find a (non-overlapping) packing of a maximum profit subset of items inside the knapsack (without rotating items). The best-known polynomial-time approximation factor for this problem (even just in the cardinality case) is 2+ε [Jansen and Zhang, SODA 2004]. In this article we present a polynomial-time 17/9+ε < 1.89-approximation, which improves to 558/325+ε < 1.72 in the cardinality case. Prior results pack items into a constant number of rectangular containers that are filled via greedy strategies. We deviate from this setting and show that there exists a large profit solution where items are packed into a constant number of containers plus one L-shaped region at the boundary of the knapsack containing narrow-high items and thin-wide items. These items may interact in complex manners at the corner of the L. The best-known approximation ratio for the subproblem in the L-shaped region is 2+ε (via a trivial reduction to one-dimensional knapsack); hence, as a second major result we present a PTAS for this case that we believe might be of broader utility. We also consider the variant with rotations, where items can be rotated by 90 degrees. Again, the best-known polynomial-time approximation factor (even for the cardinality case) is 2+ε [Jansen and Zhang, SODA 2004]. We present a polynomial-time (3/2+ε)-approximation for this setting, which improves to 4/3+ε in the cardinality case.

Author(s):  
Ulrich Pferschy ◽  
Joachim Schauer ◽  
Clemens Thielen

AbstractWe consider the product knapsack problem, which is the variant of the classical 0-1 knapsack problem where the objective consists of maximizing the product of the profits of the selected items. These profits are allowed to be positive or negative. We present the first fully polynomial-time approximation scheme for the product knapsack problem, which is known to be weakly -hard. Moreover, we analyze the approximation quality achieved by a natural extension of the classical knapsack greedy procedure to the product knapsack problem.


2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
M. Bouznif ◽  
R. Giroudeau

We investigate complexity and approximation results on a processor networks where the communication delay depends on the distance between the processors performing tasks. We then prove that there is no heuristic with a performance guarantee smaller than 4/3 for makespan minimization for precedence graph on a large class of processor networks like hypercube, grid, torus, and so forth, with a fixed diameter . We extend complexity results when the precedence graph is a bipartite graph. We also design an efficient polynomial-time -approximation algorithm for the makespan minimization on processor networks with diameter .


Sign in / Sign up

Export Citation Format

Share Document