Coordinating Human-Robot Teams with Dynamic and Stochastic Task Proficiencies
As robots become ubiquitous in the workforce, it is essential that human-robot collaboration be both intuitive and adaptive. A robot’s ability to coordinate team activities improves based on its ability to infer and reason about the dynamic (i.e., the “learning curve”) and stochastic task performance of its human counterparts. We introduce a novel resource coordination algorithm that enables robots to schedule team activities by (1) actively characterizing the task performance of their human teammates and (2) ensuring the schedule is robust to temporal constraints given this characterization. We first validate our modeling assumptions via user study. From this user study, we create a data-driven prior distribution over human task performance for our virtual and physical evaluations of human-robot teaming. Second, we show that our methods are scalable and produce high-quality schedules. Third, we conduct a between-subjects experiment (n = 90) to assess the effects on a human-robot team of a robot scheduler actively exploring the humans’ task proficiency. Our results indicate that human-robot working alliance ( p\lt 0.001 ) and human performance ( p=0.00359 ) are maximized when the robot dedicates more time to exploring the capabilities of human teammates.