Investigating the Feasibility of Deep Learning Methods for Urdu Word Sense Disambiguation

Author(s):  
Ali Saeed ◽  
Rao Muhammad Adeel Nawab ◽  
Mark Stevenson

Word Sense Disambiguation (WSD), the process of automatically identifying the correct meaning of a word used in a given context, is a significant challenge in Natural Language Processing. A range of approaches to the problem has been explored by the research community. The majority of these efforts has focused on a relatively small set of languages, particularly English. Research on WSD for South Asian languages, particularly Urdu, is still in its infancy. In recent years, deep learning methods have proved to be extremely successful for a range of Natural Language Processing tasks. The main aim of this study is to apply, evaluate, and compare a range of deep learning methods approaches to Urdu WSD (both Lexical Sample and All-Words) including Simple Recurrent Neural Networks, Long-Short Term Memory, Gated Recurrent Units, Bidirectional Long-Short Term Memory, and Ensemble Learning. The evaluation was carried out on two benchmark corpora: (1) the ULS-WSD-18 corpus and (2) the UAW-WSD-18 corpus. Results (Accuracy = 63.25% and F1-Measure = 0.49) show that a deep learning approach outperforms previously reported results for the Urdu All-Words WSD task, whereas performance using deep learning approaches (Accuracy = 72.63% and F1-Measure = 0.60) are low in comparison to previously reported for the Urdu Lexical Sample task.

2019 ◽  
Vol 20 (S16) ◽  
Author(s):  
Canlin Zhang ◽  
Daniel Biś ◽  
Xiuwen Liu ◽  
Zhe He

Abstract Background In recent years, deep learning methods have been applied to many natural language processing tasks to achieve state-of-the-art performance. However, in the biomedical domain, they have not out-performed supervised word sense disambiguation (WSD) methods based on support vector machines or random forests, possibly due to inherent similarities of medical word senses. Results In this paper, we propose two deep-learning-based models for supervised WSD: a model based on bi-directional long short-term memory (BiLSTM) network, and an attention model based on self-attention architecture. Our result shows that the BiLSTM neural network model with a suitable upper layer structure performs even better than the existing state-of-the-art models on the MSH WSD dataset, while our attention model was 3 or 4 times faster than our BiLSTM model with good accuracy. In addition, we trained “universal” models in order to disambiguate all ambiguous words together. That is, we concatenate the embedding of the target ambiguous word to the max-pooled vector in the universal models, acting as a “hint”. The result shows that our universal BiLSTM neural network model yielded about 90 percent accuracy. Conclusion Deep contextual models based on sequential information processing methods are able to capture the relative contextual information from pre-trained input word embeddings, in order to provide state-of-the-art results for supervised biomedical WSD tasks.


2018 ◽  
Vol 10 (11) ◽  
pp. 113 ◽  
Author(s):  
Yue Li ◽  
Xutao Wang ◽  
Pengjian Xu

Text classification is of importance in natural language processing, as the massive text information containing huge amounts of value needs to be classified into different categories for further use. In order to better classify text, our paper tries to build a deep learning model which achieves better classification results in Chinese text than those of other researchers’ models. After comparing different methods, long short-term memory (LSTM) and convolutional neural network (CNN) methods were selected as deep learning methods to classify Chinese text. LSTM is a special kind of recurrent neural network (RNN), which is capable of processing serialized information through its recurrent structure. By contrast, CNN has shown its ability to extract features from visual imagery. Therefore, two layers of LSTM and one layer of CNN were integrated to our new model: the BLSTM-C model (BLSTM stands for bi-directional long short-term memory while C stands for CNN.) LSTM was responsible for obtaining a sequence output based on past and future contexts, which was then input to the convolutional layer for extracting features. In our experiments, the proposed BLSTM-C model was evaluated in several ways. In the results, the model exhibited remarkable performance in text classification, especially in Chinese texts.


Author(s):  
Satish Tirumalapudi

Abstract: Chat bots are software applications that help users to communicate with the machine and get the required result, this is where Natural Language Processing (NLP) comes into the picture. Natural language processing is based on deep learning that enables computers to acquire meaning from inputs given by the users. Natural language processing techniques can make possible the use of natural language to express ideas, thus drastically increasing accessibility. NLP engines rely on the elements of intent, utterance, entity, context, and session. Here in this project, we will be using Deep learning techniques which will be trained on the dataset which contains categories, patterns, and responses. Long Short-Term Memory (LSTM) is a Recurrent Neural Network that is capable of learning order dependence in sequence prediction problems. One of the most popular RNN approaches is LSTM to identify and control a dynamic system. We use an RNN to classify the category user’s message belongs to and then will give a response from the list of responses. Keywords: NLP – Natural Language Processing, LSTM – Long Short Term Memory, RNN – Recurrent Neural Networks.


Author(s):  
Yudi Widhiyasana ◽  
Transmissia Semiawan ◽  
Ilham Gibran Achmad Mudzakir ◽  
Muhammad Randi Noor

Klasifikasi teks saat ini telah menjadi sebuah bidang yang banyak diteliti, khususnya terkait Natural Language Processing (NLP). Terdapat banyak metode yang dapat dimanfaatkan untuk melakukan klasifikasi teks, salah satunya adalah metode deep learning. RNN, CNN, dan LSTM merupakan beberapa metode deep learning yang umum digunakan untuk mengklasifikasikan teks. Makalah ini bertujuan menganalisis penerapan kombinasi dua buah metode deep learning, yaitu CNN dan LSTM (C-LSTM). Kombinasi kedua metode tersebut dimanfaatkan untuk melakukan klasifikasi teks berita bahasa Indonesia. Data yang digunakan adalah teks berita bahasa Indonesia yang dikumpulkan dari portal-portal berita berbahasa Indonesia. Data yang dikumpulkan dikelompokkan menjadi tiga kategori berita berdasarkan lingkupnya, yaitu “Nasional”, “Internasional”, dan “Regional”. Dalam makalah ini dilakukan eksperimen pada tiga buah variabel penelitian, yaitu jumlah dokumen, ukuran batch, dan nilai learning rate dari C-LSTM yang dibangun. Hasil eksperimen menunjukkan bahwa nilai F1-score yang diperoleh dari hasil klasifikasi menggunakan metode C-LSTM adalah sebesar 93,27%. Nilai F1-score yang dihasilkan oleh metode C-LSTM lebih besar dibandingkan dengan CNN, dengan nilai 89,85%, dan LSTM, dengan nilai 90,87%. Dengan demikian, dapat disimpulkan bahwa kombinasi dua metode deep learning, yaitu CNN dan LSTM (C-LSTM),memiliki kinerja yang lebih baik dibandingkan dengan CNN dan LSTM.


2020 ◽  
Vol 196 ◽  
pp. 02007
Author(s):  
Vladimir Mochalov ◽  
Anastasia Mochalova

In this paper, the previously obtained results on recognition of ionograms using deep learning are expanded to predict the parameters of the ionosphere. After the ionospheric parameters have been identified on the ionogram using deep learning in real time, we can predict the parameters for some time ahead on the basis of the new data obtained Examples of predicting the ionosphere parameters using an artificial recurrent neural network architecture long short-term memory are given. The place of the block for predicting the parameters of the ionosphere in the system for analyzing ionospheric data using deep learning methods is shown.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 348 ◽  
Author(s):  
Guang Yang ◽  
HwaMin Lee ◽  
Giyeol Lee

Both long- and short-term exposure to high concentrations of airborne particulate matter (PM) severely affect human health. Many countries now regulate PM concentrations. Early-warning systems based on PM concentration levels are urgently required to allow countermeasures to reduce harm and loss. Previous studies sought to establish accurate, efficient predictive models. Many machine-learning methods are used for air pollution forecasting. The long short-term memory and gated recurrent unit methods, typical deep-learning methods, reliably predict PM levels with some limitations. In this paper, the authors proposed novel hybrid models to combine the strength of two types of deep learning methods. Moreover, the authors compare hybrid deep-learning methods (convolutional neural network (CNN)—long short-term memory (LSTM) and CNN—gated recurrent unit (GRU)) with several stand-alone methods (LSTM, GRU) in terms of predicting PM concentrations in 39 stations in Seoul. Hourly air pollution data and meteorological data from January 2015 to December 2018 was used for these training models. The results of the experiment confirmed that the proposed prediction model could predict the PM concentrations for the next 7 days. Hybrid models outperformed single models in five areas selected randomly with the lowest root mean square error (RMSE) and mean absolute error (MAE) values for both PM10 and PM2.5. The error rate for PM10 prediction in Gangnam with RMSE is 1.688, and MAE is 1.161. For hybrid models, the CNN–GRU better-predicted PM10 for all stations selected, while the CNN–LSTM model performed better on predicting PM2.5.


2019 ◽  
Vol 11 (20) ◽  
pp. 2363 ◽  
Author(s):  
Wenchao Qi ◽  
Xia Zhang ◽  
Nan Wang ◽  
Mao Zhang ◽  
Yi Cen

Deep learning methods used for hyperspectral image (HSI) classification often achieve greater accuracy than traditional algorithms but require large numbers of training epochs. To simplify model structures and reduce their training epochs, an end-to-end deep learning framework incorporating a spectral-spatial cascaded 3D convolutional neural network (CNN) with a convolutional long short-term memory (CLSTM) network, called SSCC, is proposed herein for HSI classification. The SSCC framework employs cascaded 3D CNN to learn the spectral-spatial features of HSIs and uses the CLSTM network to extract sequence features. Residual connections are used in SSCC to accelerate model convergence, with the outputs of previous convolutional layers concatenated as inputs for subsequent layers. Moreover, the data augmentation, parametric rectified linear unit, dynamic learning rate, batch normalization, and regularization (including dropout and L2) methods are used to increase classification accuracy and prevent overfitting. These attributes allow the SSCC framework to achieve good performance for HSI classification within 20 epochs. Three well-known datasets including Indiana Pines, University of Pavia, and Pavia Center were employed to evaluate the classification performance of the proposed algorithm. The GF-5 dataset of Anxin County, obtained from China’s recently launched spaceborne Advanced Hyperspectral Imager, was also used for classification experiments. The experimental results demonstrate that the proposed SSCC framework achieves state-of-the-art performance with better training efficiency than other deep learning methods.


Sign in / Sign up

Export Citation Format

Share Document