FG-LiquID
Contact-less liquid identification via wireless sensing has diverse potential applications in our daily life, such as identifying alcohol content in liquids, distinguishing spoiled and fresh milk, and even detecting water contamination. Recent works have verified the feasibility of utilizing mmWave radar to perform coarse-grained material identification, e.g., discriminating liquid and carpet. However, they do not fully exploit the sensing limits of mmWave in terms of fine-grained material classification. In this paper, we propose FG-LiquID, an accurate and robust system for fine-grained liquid identification. To achieve the desired fine granularity, FG-LiquID first focuses on the small but informative region of the mmWave spectrum, so as to extract the most discriminative features of liquids. Then we design a novel neural network, which uncovers and leverages the hidden signal patterns across multiple antennas on mmWave sensors. In this way, FG-LiquID learns to calibrate signals and finally eliminate the adverse effect of location interference caused by minor displacement/rotation of the liquid container, which ensures robust identification towards daily usage scenarios. Extensive experimental results using a custom-build prototype demonstrate that FG-LiquID can accurately distinguish 30 different liquids with an average accuracy of 97%, under 5 different scenarios. More importantly, it can discriminate quite similar liquids, such as liquors with the difference of only 1% alcohol concentration by volume.