Synthesizing Brain-network-inspired Interconnections for Large-scale Network-on-chips
Brain network is a large-scale complex network with scale-free, small-world, and modularity properties, which largely supports this high-efficiency massive system. In this article, we propose to synthesize brain-network-inspired interconnections for large-scale network-on-chips. First, we propose a method to generate brain-network-inspired topologies with limited scale-free and power-law small-world properties, which have a low total link length and extremely low average hop count approximately proportional to the logarithm of the network size. In addition, given the large-scale applications, considering the modularity of the brain-network-inspired topologies, we present an application mapping method, including task mapping and deterministic deadlock-free routing, to minimize the power consumption and hop count. Finally, a cycle-accurate simulator BookSim2 is used to validate the architecture performance with different synthetic traffic patterns and large-scale test cases, including real-world communication networks for the graph processing application. Experiments show that, compared with other topologies and methods, the brain-network-inspired network-on-chips (NoCs) generated by the proposed method present significantly lower average hop count and lower average latency. Especially in graph processing applications with a power-law and tightly coupled inter-core communication, the brain-network-inspired NoC has up to 70% lower average hop count and 75% lower average latency than mesh-based NoCs.