One-Shot Relation Learning for Knowledge Graphs via Neighborhood Aggregation and Paths Encoding

Author(s):  
Jian Sun ◽  
Yu Zhou ◽  
Chengqing Zong

The relation learning between two entities is an essential task in knowledge graph (KG) completion that has received much attention recently. Previous work almost exclusively focused on relations widely seen in the original KGs, which means that enough training data are available for modeling. However, long-tail relations that only show in a few triples are actually much more common in practical KGs. Without sufficiently large training data, the performance of existing models on predicting long-tail relations drops impressively. This work aims to predict the relation under a challenging setting where only one instance is available for training. We propose a path-based one-shot relation prediction framework, which can extract neighborhood information of an entity based on the relation query attention mechanism to learn transferable knowledge among the same relation. Simultaneously, to reduce the impact of long-tail entities on relation prediction, we selectively fuse path information between entity pairs as auxiliary information of relation features. Experiments in three one-shot relation learning datasets show that our proposed framework substantially outperforms existing models on one-shot link prediction and relation prediction.

Author(s):  
Kai Chen ◽  
Guohua Shen ◽  
Zhiqiu Huang ◽  
Haijuan Wang

Question Answering systems over Knowledge Graphs (KG) answer natural language questions using facts contained in a knowledge graph, and Simple Question Answering over Knowledge Graphs (KG-SimpleQA) means that the question can be answered by a single fact. Entity linking, which is a core component of KG-SimpleQA, detects the entities mentioned in questions, and links them to the actual entity in KG. However, traditional methods ignore some information of entities, especially entity types, which leads to the emergence of entity ambiguity problem. Besides, entity linking suffers from out-of-vocabulary (OOV) problem due to the limitation of pre-trained word embeddings. To address these problems, we encode questions in a novel way and encode the features contained in the entities in a multilevel way. To evaluate the enhancement of the whole KG-SimpleQA brought by our improved entity linking, we utilize a relatively simple approach for relation prediction. Besides, to reduce the impact of losing the feature during the encoding procedure, we utilize a ranking algorithm to re-rank (entity, relation) pairs. According to the experimental results, our method for entity linking achieves an accuracy of 81.8% that beats the state-of-the-art methods, and our improved entity linking brings a boost of 5.6% for the whole KG-SimpleQA.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Chunhua Li ◽  
Xuefeng Xian ◽  
Xusheng Ai ◽  
Zhiming Cui

Most of the existing knowledge graph embedding models are supervised methods and largely relying on the quality and quantity of obtainable labelled training data. The cost of obtaining high quality triples is high and the data sources are facing a serious problem of data sparsity, which may result in insufficient training of long-tail entities. However, unstructured text encoding entities and relational knowledge can be obtained anywhere in large quantities. Word vectors of entity names estimated from the unlabelled raw text using natural language model encode syntax and semantic properties of entities. Yet since these feature vectors are estimated through minimizing prediction error on unsupervised entity names, they may not be the best for knowledge graphs. We propose a two-phase approach to adapt unsupervised entity name embeddings to a knowledge graph subspace and jointly learn the adaptive matrix and knowledge representation. Experiments on Freebase show that our method can rely less on the labelled data and outperforms the baselines when the labelled data is relatively less. Especially, it is applicable to zero-shot scenario.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1407
Author(s):  
Peng Wang ◽  
Jing Zhou ◽  
Yuzhang Liu ◽  
Xingchen Zhou

Knowledge graph embedding aims to embed entities and relations into low-dimensional vector spaces. Most existing methods only focus on triple facts in knowledge graphs. In addition, models based on translation or distance measurement cannot fully represent complex relations. As well-constructed prior knowledge, entity types can be employed to learn the representations of entities and relations. In this paper, we propose a novel knowledge graph embedding model named TransET, which takes advantage of entity types to learn more semantic features. More specifically, circle convolution based on the embeddings of entity and entity types is utilized to map head entity and tail entity to type-specific representations, then translation-based score function is used to learn the presentation triples. We evaluated our model on real-world datasets with two benchmark tasks of link prediction and triple classification. Experimental results demonstrate that it outperforms state-of-the-art models in most cases.


2018 ◽  
Vol 10 (9) ◽  
pp. 3245 ◽  
Author(s):  
Tianxing Wu ◽  
Guilin Qi ◽  
Cheng Li ◽  
Meng Wang

With the continuous development of intelligent technologies, knowledge graph, the backbone of artificial intelligence, has attracted much attention from both academic and industrial communities due to its powerful capability of knowledge representation and reasoning. In recent years, knowledge graph has been widely applied in different kinds of applications, such as semantic search, question answering, knowledge management and so on. Techniques for building Chinese knowledge graphs are also developing rapidly and different Chinese knowledge graphs have been constructed to support various applications. Under the background of the “One Belt One Road (OBOR)” initiative, cooperating with the countries along OBOR on studying knowledge graph techniques and applications will greatly promote the development of artificial intelligence. At the same time, the accumulated experience of China in developing knowledge graphs is also a good reference to develop non-English knowledge graphs. In this paper, we aim to introduce the techniques of constructing Chinese knowledge graphs and their applications, as well as analyse the impact of knowledge graph on OBOR. We first describe the background of OBOR, and then introduce the concept and development history of knowledge graph and typical Chinese knowledge graphs. Afterwards, we present the details of techniques for constructing Chinese knowledge graphs, and demonstrate several applications of Chinese knowledge graphs. Finally, we list some examples to explain the potential impacts of knowledge graph on OBOR.


2020 ◽  
Vol 34 (05) ◽  
pp. 9612-9619
Author(s):  
Zhao Zhang ◽  
Fuzhen Zhuang ◽  
Hengshu Zhu ◽  
Zhiping Shi ◽  
Hui Xiong ◽  
...  

The rapid proliferation of knowledge graphs (KGs) has changed the paradigm for various AI-related applications. Despite their large sizes, modern KGs are far from complete and comprehensive. This has motivated the research in knowledge graph completion (KGC), which aims to infer missing values in incomplete knowledge triples. However, most existing KGC models treat the triples in KGs independently without leveraging the inherent and valuable information from the local neighborhood surrounding an entity. To this end, we propose a Relational Graph neural network with Hierarchical ATtention (RGHAT) for the KGC task. The proposed model is equipped with a two-level attention mechanism: (i) the first level is the relation-level attention, which is inspired by the intuition that different relations have different weights for indicating an entity; (ii) the second level is the entity-level attention, which enables our model to highlight the importance of different neighboring entities under the same relation. The hierarchical attention mechanism makes our model more effective to utilize the neighborhood information of an entity. Finally, we extensively validate the superiority of RGHAT against various state-of-the-art baselines.


2020 ◽  
Vol 34 (01) ◽  
pp. 222-229
Author(s):  
Zequn Sun ◽  
Chengming Wang ◽  
Wei Hu ◽  
Muhao Chen ◽  
Jian Dai ◽  
...  

Graph neural networks (GNNs) have emerged as a powerful paradigm for embedding-based entity alignment due to their capability of identifying isomorphic subgraphs. However, in real knowledge graphs (KGs), the counterpart entities usually have non-isomorphic neighborhood structures, which easily causes GNNs to yield different representations for them. To tackle this problem, we propose a new KG alignment network, namely AliNet, aiming at mitigating the non-isomorphism of neighborhood structures in an end-to-end manner. As the direct neighbors of counterpart entities are usually dissimilar due to the schema heterogeneity, AliNet introduces distant neighbors to expand the overlap between their neighborhood structures. It employs an attention mechanism to highlight helpful distant neighbors and reduce noises. Then, it controls the aggregation of both direct and distant neighborhood information using a gating mechanism. We further propose a relation loss to refine entity representations. We perform thorough experiments with detailed ablation studies and analyses on five entity alignment datasets, demonstrating the effectiveness of AliNet.


2020 ◽  
Vol 34 (03) ◽  
pp. 3065-3072 ◽  
Author(s):  
Zhanqiu Zhang ◽  
Jianyu Cai ◽  
Yongdong Zhang ◽  
Jie Wang

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model—namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)—which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 485
Author(s):  
Meihong Wang ◽  
Linling Qiu ◽  
Xiaoli Wang

Knowledge graphs (KGs) have been widely used in the field of artificial intelligence, such as in information retrieval, natural language processing, recommendation systems, etc. However, the open nature of KGs often implies that they are incomplete, having self-defects. This creates the need to build a more complete knowledge graph for enhancing the practical utilization of KGs. Link prediction is a fundamental task in knowledge graph completion that utilizes existing relations to infer new relations so as to build a more complete knowledge graph. Numerous methods have been proposed to perform the link-prediction task based on various representation techniques. Among them, KG-embedding models have significantly advanced the state of the art in the past few years. In this paper, we provide a comprehensive survey on KG-embedding models for link prediction in knowledge graphs. We first provide a theoretical analysis and comparison of existing methods proposed to date for generating KG embedding. Then, we investigate several representative models that are classified into five categories. Finally, we conducted experiments on two benchmark datasets to report comprehensive findings and provide some new insights into the strengths and weaknesses of existing models.


Author(s):  
Thanh Le ◽  
Hoang Nguyen ◽  
Bac Le

Link prediction in knowledge graphs gradually plays an essential role in the field of research and application. Through detecting latent connections, we can refine the knowledge in the graph, discover interesting relationships, answer user questions or make item suggestions. In this paper, we conduct a survey of the methods that are currently achieving good results in link prediction. Specially, we perform surveys on both static and temporal graphs. First, we divide the algorithms into groups based on the characteristic representation of entities and relations. After that, we describe the original idea and analyze the key improvements. In each group, comparisons and investigation on the pros and cons of each method as well as their applications are made. Based on that, the correlation of the two graph types in link prediction is drawn. Finally, from the overview of the link prediction problem, we propose some directions to improve the models for future studies.


2020 ◽  
Vol 34 (05) ◽  
pp. 7772-7779 ◽  
Author(s):  
Tianyu Gao ◽  
Xu Han ◽  
Ruobing Xie ◽  
Zhiyuan Liu ◽  
Fen Lin ◽  
...  

Knowledge graphs typically undergo open-ended growth of new relations. This cannot be well handled by relation extraction that focuses on pre-defined relations with sufficient training data. To address new relations with few-shot instances, we propose a novel bootstrapping approach, Neural Snowball, to learn new relations by transferring semantic knowledge about existing relations. More specifically, we use Relational Siamese Networks (RSN) to learn the metric of relational similarities between instances based on existing relations and their labeled data. Afterwards, given a new relation and its few-shot instances, we use RSN to accumulate reliable instances from unlabeled corpora; these instances are used to train a relation classifier, which can further identify new facts of the new relation. The process is conducted iteratively like a snowball. Experiments show that our model can gather high-quality instances for better few-shot relation learning and achieves significant improvement compared to baselines. Codes and datasets are released on https://github.com/thunlp/Neural-Snowball.


Sign in / Sign up

Export Citation Format

Share Document