Legal Judgment Elements Extraction Approach with Law Article-aware Mechanism
Legal judgment elements extraction (LJEE) aims to identify the different judgment features from the fact description in legal documents automatically, which helps to improve the accuracy and interpretability of the judgment results. In real court rulings, judges usually need to scan both the fact descriptions and the law articles repeatedly to find out the relevant information, and it is hard to acquire the key judgment features quickly, so legal judgment elements extraction is a crucial and challenging task for legal judgment prediction. However, most existing methods follow the text classification framework, which fails to model the attentive relations of the law articles and the legal judgment elements. To address this issue, we simulate the working process of human judges, and propose a legal judgment elements extraction method with a law article-aware mechanism, which captures the complex semantic correlations of the law article and the legal judgment elements. Experimental results show that our proposed method achieves significant improvements than other state-of-the-art baselines on the element recognition task dataset. Compared with the BERT-CNN model, the proposed “All labels Law Articles Embedding Model (ALEM)” improves the accuracy, recall, and F1 value by 0.5, 1.4 and 1.0, respectively.