scholarly journals Capturing Dynamics of Information Diffusion in SNS: A Survey of Methodology and Techniques

2023 ◽  
Vol 55 (1) ◽  
pp. 1-51
Author(s):  
Huacheng Li ◽  
Chunhe Xia ◽  
Tianbo Wang ◽  
Sheng Wen ◽  
Chao Chen ◽  
...  

Studying information diffusion in SNS (Social Networks Service) has remarkable significance in both academia and industry. Theoretically, it boosts the development of other subjects such as statistics, sociology, and data mining. Practically, diffusion modeling provides fundamental support for many downstream applications (e.g., public opinion monitoring, rumor source identification, and viral marketing). Tremendous efforts have been devoted to this area to understand and quantify information diffusion dynamics. This survey investigates and summarizes the emerging distinguished works in diffusion modeling. We first put forward a unified information diffusion concept in terms of three components: information, user decision, and social vectors, followed by a detailed introduction of the methodologies for diffusion modeling. And then, a new taxonomy adopting hybrid philosophy (i.e., granularity and techniques) is proposed, and we made a series of comparative studies on elementary diffusion models under our taxonomy from the aspects of assumptions, methods, and pros and cons. We further summarized representative diffusion modeling in special scenarios and significant downstream tasks based on these elementary models. Finally, open issues in this field following the methodology of diffusion modeling are discussed.

2015 ◽  
Vol 29 (13) ◽  
pp. 1550063 ◽  
Author(s):  
Pei Li ◽  
Yini Zhang ◽  
Fengcai Qiao ◽  
Hui Wang

Nowadays, due to the word-of-mouth effect, online social networks have been considered to be efficient approaches to conduct viral marketing, which makes it of great importance to understand the diffusion dynamics in online social networks. However, most research on diffusion dynamics in epidemiology and existing social networks cannot be applied directly to characterize online social networks. In this paper, we propose models to characterize the information diffusion in structured online social networks with push-based forwarding mechanism. We introduce the term user influence to characterize the average number of times that messages are browsed which is incurred by a given type user generating a message, and study the diffusion threshold, above which the user influence of generating a message will approach infinity. We conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of use in understanding the diffusion dynamics in online social networks and also critical for advertisers in viral marketing who want to estimate the user influence before posting an advertisement.


2013 ◽  
Vol 9 (1) ◽  
pp. 36-53
Author(s):  
Evis Trandafili ◽  
Marenglen Biba

Social networks have an outstanding marketing value and developing data mining methods for viral marketing is a hot topic in the research community. However, most social networks remain impossible to be fully analyzed and understood due to prohibiting sizes and the incapability of traditional machine learning and data mining approaches to deal with the new dimension in the learning process related to the large-scale environment where the data are produced. On one hand, the birth and evolution of such networks has posed outstanding challenges for the learning and mining community, and on the other has opened the possibility for very powerful business applications. However, little understanding exists regarding these business applications and the potential of social network mining to boost marketing. This paper presents a review of the most important state-of-the-art approaches in the machine learning and data mining community regarding analysis of social networks and their business applications. The authors review the problems related to social networks and describe the recent developments in the area discussing important achievements in the analysis of social networks and outlining future work. The focus of the review in not only on the technical aspects of the learning and mining approaches applied to social networks but also on the business potentials of such methods.


2020 ◽  
Vol 34 (10) ◽  
pp. 13730-13731
Author(s):  
Ece C. Mutlu

This doctoral consortium presents an overview of my anticipated PhD dissertation which focuses on employing quantum Bayesian networks for social learning. The project, mainly, aims to expand the use of current quantum probabilistic models in human decision-making from two agents to multi-agent systems. First, I cultivate the classical Bayesian networks which are used to understand information diffusion through human interaction on online social networks (OSNs) by taking into account the relevance of multitude of social, psychological, behavioral and cognitive factors influencing the process of information transmission. Since quantum like models require quantum probability amplitudes, the complexity will be exponentially increased with increasing uncertainty in the complex system. Therefore, the research will be followed by a study on optimization of heuristics. Here, I suggest to use an belief entropy based heuristic approach. This research is an interdisciplinary research which is related with the branches of complex systems, quantum physics, network science, information theory, cognitive science and mathematics. Therefore, findings can contribute significantly to the areas related mainly with social learning behavior of people, and also to the aforementioned branches of complex systems. In addition, understanding the interactions in complex systems might be more viable via the findings of this research since probabilistic approaches are not only used for predictive purposes but also for explanatory aims.


2021 ◽  
Vol 11 (2) ◽  
pp. 313-320
Author(s):  
Xiaofeng Wang ◽  
Wei Zhuo ◽  
Qianyi Zhan ◽  
Yuan Liu

Viral marketing for public health campaigns aims at identifying a group of seed users to maximize the message of public health information in a target social network. Different from traditional viral marketing problems, public health campaigns try to expand social influence in the target network, meanwhile it also focus on their target audience, who are difficult to discover. Meanwhile, besides the target network, users nowadays can also participate many other social networks. Discovering target audience and viral marketing in these networks, referred to as the source networks, can be relatively easier, and the shared users can act as intermediate nodes transmitting information from these networks to the target one. In this paper, we propose to carry viral marketing for public health campaign in the target network in a roundabout way, by selecting seed users from the target and other external networks and influence users through intra- and inter-network information diffusion. To achieve such an objective, a new inter-network information diffusion model IPADH is introduced in this paper. Based on IPADH, cross-network viral marketing framework IMDP is proposed to solve the problem. Extensive experiments are conducted on anti-smoking campaign datasets, and results demonstrate that IMDP can outperform traditional intra-network viral marketing methods with significant advantages.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Pei Li ◽  
Wei Li ◽  
Hui Wang ◽  
Xin Zhang

Due to the existence of information overload in social networks, it becomes increasingly difficult for users to find useful information according to their interests. This paper takes Twitter-like social networks into account and proposes models to characterize the process of information diffusion under information overload. Users are classified into different types according to their in-degrees and out-degrees, and user behaviors are generalized into two categories: generating and forwarding. View scope is introduced to model the user information-processing capability under information overload, and the average number of times a message appears in view scopes after it is generated by a given type user is adopted to characterize the information diffusion efficiency, which is calculated theoretically. To verify the accuracy of theoretical analysis results, we conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of importance to understand the diffusion dynamics in social networks, and this analysis framework can be extended to consider more realistic situations.


2014 ◽  
Vol 28 (22) ◽  
pp. 1450147 ◽  
Author(s):  
Pei Li ◽  
Su He ◽  
Hui Wang ◽  
Xin Zhang

Online social networks have attracted increasing attention since they provide various approaches for hundreds of millions of people to stay connected with their friends. However, most research on diffusion dynamics in epidemiology cannot be applied directly to characterize online social networks, where users are heterogeneous and may act differently according to their standpoints. In this paper, we propose models to characterize the competitive diffusion in online social networks with heterogeneous users. We classify messages into two types (i.e., positive and negative) and users into three types (i.e., positive, negative and neutral). We estimate the positive (negative) influence for a user generating a given type message, which is the number of times that positive (negative) messages are processed (i.e., read) incurred by this action. We then consider the diffusion threshold, above which the corresponding influence will approach infinity, and the effect threshold, above which the unexpected influence of generating a message will exceed the expected one. We verify all these results by simulations, which show the analysis results are perfectly consistent with the simulation results. These results are of importance in understanding the diffusion dynamics in online social networks, and also critical for advertisers in viral marketing where there are fans, haters and neutrals.


2019 ◽  
Vol 5 (5) ◽  
Author(s):  
Elena Gerasikova ◽  
Milena Ischenko ◽  
Olga Saenkova ◽  
Nataliya Yasenkova

2021 ◽  
Vol 54 (2) ◽  
pp. 1-36
Author(s):  
Fan Zhou ◽  
Xovee Xu ◽  
Goce Trajcevski ◽  
Kunpeng Zhang

The deluge of digital information in our daily life—from user-generated content, such as microblogs and scientific papers, to online business, such as viral marketing and advertising—offers unprecedented opportunities to explore and exploit the trajectories and structures of the evolution of information cascades. Abundant research efforts, both academic and industrial, have aimed to reach a better understanding of the mechanisms driving the spread of information and quantifying the outcome of information diffusion. This article presents a comprehensive review and categorization of information popularity prediction methods, from feature engineering and stochastic processes , through graph representation , to deep learning-based approaches . Specifically, we first formally define different types of information cascades and summarize the perspectives of existing studies. We then present a taxonomy that categorizes existing works into the aforementioned three main groups as well as the main subclasses in each group, and we systematically review cutting-edge research work. Finally, we summarize the pros and cons of existing research efforts and outline the open challenges and opportunities in this field.


Sign in / Sign up

Export Citation Format

Share Document