scholarly journals Universal Equivalence and Majority of Probabilistic Programs over Finite Fields

2022 ◽  
Vol 23 (1) ◽  
pp. 1-42
Author(s):  
Gilles Barthe ◽  
Charlie Jacomme ◽  
Steve Kremer

We study decidability problems for equivalence of probabilistic programs for a core probabilistic programming language over finite fields of fixed characteristic. The programming language supports uniform sampling, addition, multiplication, and conditionals and thus is sufficiently expressive to encode Boolean and arithmetic circuits. We consider two variants of equivalence: The first one considers an interpretation over the finite field F q , while the second one, which we call universal equivalence, verifies equivalence over all extensions F q k of F q . The universal variant typically arises in provable cryptography when one wishes to prove equivalence for any length of bitstrings, i.e., elements of F 2 k for any k . While the first problem is obviously decidable, we establish its exact complexity, which lies in the counting hierarchy. To show decidability and a doubly exponential upper bound of the universal variant, we rely on results from algorithmic number theory and the possibility to compare local zeta functions associated to given polynomials. We then devise a general way to draw links between the universal probabilistic problems and widely studied problems on linear recurrence sequences. Finally, we study several variants of the equivalence problem, including a problem we call majority, motivated by differential privacy. We also define and provide some insights about program indistinguishability, proving that it is decidable for programs always returning 0 or 1.

2011 ◽  
Vol 63 (2) ◽  
pp. 241-276 ◽  
Author(s):  
Driss Essouabri ◽  
Kohji Matsumoto ◽  
Hirofumi Tsumura

Abstract We prove the holomorphic continuation of certain multi-variable multiple zeta-functions whose coefficients satisfy a suitable recurrence condition. In fact, we introduce more general vectorial zeta-functions and prove their holomorphic continuation. Moreover, we show a vectorial sum formula among those vectorial zeta-functions fromwhich some generalizations of the classical sum formula can be deduced.


1993 ◽  
Vol 295 (1) ◽  
pp. 635-641 ◽  
Author(s):  
Willem Veys

1996 ◽  
Vol 39 (1) ◽  
pp. 35-46 ◽  
Author(s):  
G. R. Everest ◽  
I. E. Shparlinski

AbstractA study is made of sums of reciprocal norms of integral and prime ideal divisors of algebraic integer values of a generalised exponential polynomial. This includes the important special cases of linear recurrence sequences and general sums of S-units. In the case of an integral binary recurrence sequence, similar (but stronger) results were obtained by P. Erdős, P. Kiss and C. Pomerance.


2018 ◽  
Vol 159 (3-4) ◽  
pp. 321-346 ◽  
Author(s):  
Clemens Fuchs ◽  
Christina Karolus ◽  
Dijana Kreso

Sign in / Sign up

Export Citation Format

Share Document