scholarly journals An Active Learning Framework for Efficient Robust Policy Search

2022 ◽  
Author(s):  
Sai Kiran Narayanaswami ◽  
Nandan Sudarsanam ◽  
Balaraman Ravindran
Chemosensors ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 78
Author(s):  
Jianhua Cao ◽  
Tao Liu ◽  
Jianjun Chen ◽  
Tao Yang ◽  
Xiuxiu Zhu ◽  
...  

Gas sensor drift is an important issue of electronic nose (E-nose) systems. This study follows this concern under the condition that requires an instant drift compensation with massive online E-nose responses. Recently, an active learning paradigm has been introduced to such condition. However, it does not consider the “noisy label” problem caused by the unreliability of its labeling process in real applications. Thus, we have proposed a class-label appraisal methodology and associated active learning framework to assess and correct the noisy labels. To evaluate the performance of the proposed methodologies, we used the datasets from two E-nose systems. The experimental results show that the proposed methodology helps the E-noses achieve higher accuracy with lower computation than the reference methods do. Finally, we can conclude that the proposed class-label appraisal mechanism is an effective means of enhancing the robustness of active learning-based E-nose drift compensation.


2021 ◽  
Author(s):  
Anubhav Chhabra ◽  
Tirumala Sree Akhil Nandyala ◽  
Paula Branco

PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0188996 ◽  
Author(s):  
Muhammad Ahmad ◽  
Stanislav Protasov ◽  
Adil Mehmood Khan ◽  
Rasheed Hussain ◽  
Asad Masood Khattak ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 297 ◽  
Author(s):  
Nasehe Jamshidpour ◽  
Abdolreza Safari ◽  
Saeid Homayouni

This paper introduces a novel multi-view multi-learner (MVML) active learning method, in which the different views are generated by a genetic algorithm (GA). The GA-based view generation method attempts to construct diverse, sufficient, and independent views by considering both inter- and intra-view confidences. Hyperspectral data inherently owns high dimensionality, which makes it suitable for multi-view learning algorithms. Furthermore, by employing multiple learners at each view, a more accurate estimation of the underlying data distribution can be obtained. We also implemented a spectral-spatial graph-based semi-supervised learning (SSL) method as the classifier, which improved the performance of the classification task in comparison with supervised learning. The evaluation of the proposed method was based on three different benchmark hyperspectral data sets. The results were also compared with other state-of-the-art AL-SSL methods. The experimental results demonstrated the efficiency and statistically significant superiority of the proposed method. The GA-MVML AL method improved the classification performances by 16.68%, 18.37%, and 15.1% for different data sets after 40 iterations.


Sign in / Sign up

Export Citation Format

Share Document