Effect of Carbon Loading Method on Electrochemical Characteristics of LiMnPO4 Positive Active Materials for Li-ion Cells

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4093
Author(s):  
Maciej Ratynski ◽  
Bartosz Hamankiewicz ◽  
Dominika A. Buchberger ◽  
Andrzej Czerwinski

Among the many studied Li-ion active materials, silicon presents the highest specific capacity, however it suffers from a great volume change during lithiation. In this work, we present two methods for the chemical modification of silicon nanoparticles. Both methods change the materials’ electrochemical characteristics. The combined XPS and SEM results show that the properties of the generated silicon oxide layer depend on the modification procedure employed. Electrochemical characterization reveals that the formed oxide layers show different susceptibility to electro-reduction during the first lithiation. The single step oxidation procedure resulted in a thin and very stable oxide that acts as an artificial SEI layer during electrode operation. The removal of the native oxide prior to further reactions resulted in a very thick oxide layer formation. The created oxide layers (both thin and thick) greatly suppress the effect of silicon volume changes, which significantly reduces electrode degradation during cycling. Both modification techniques are relatively straightforward and scalable to an industrial level. The proposed modified materials reveal great applicability prospects in next generation Li-ion batteries due to their high specific capacity and remarkable cycling stability.


RSC Advances ◽  
2021 ◽  
Vol 11 (44) ◽  
pp. 27356-27368
Author(s):  
Onurcan Buken ◽  
Kayla Mancini ◽  
Amrita Sarkar

A green solvent-based methodology was developed for delaminating cathode active materials from aluminium current collectors in end-of-life Li-ion batteries.


2016 ◽  
Author(s):  
Zhenhai Gao ◽  
Xiaoting Zhang ◽  
Hongyu Hu ◽  
Dalei Guo ◽  
Hui Zhao ◽  
...  

2010 ◽  
Vol 17 (01) ◽  
pp. 51-58 ◽  
Author(s):  
JEONG-HUN JU ◽  
YOUNG-MIN CHUNG ◽  
YU-RIM BAK ◽  
MOON-JIN HWANG ◽  
KWANG-SUN RYU

Carbon nano-coated LiNi 0.8 Co 0.15 Al 0.05 O 2/ C (LNCAO/C) cathode-active materials were prepared by a sol–gel method and investigated as the cathode material for lithium ion batteries. Electrochemical properties including the galvanostatic charge–discharge ability and cyclic voltammogram behavior were measured. Cyclic voltammetry (2.7–4.8 V) showed that the carbon nano-coating improved the "formation" of the LNCAO electrode, which was related to the increased electronic conductivity between the primary particles. The carbon nano-coated LNCAO/C exhibited good electrochemical performance at high C -rate. Also, the thermal stability at a highly oxidized state of the carbon nano-coated LNCAO was remarkably enhanced. The carbon nano-coating layer can serve as a physical and/or (electro-)chemical protection shell for the underlying LNCAO, which is attributed to an increase of the grain connectivity (physical part) and also to the protection of metal oxide from chemical reactions (chemical part).


2014 ◽  
Vol 540 ◽  
pp. 267-271
Author(s):  
Xin Liu ◽  
Lin Yan Li ◽  
Fan Yun Zeng ◽  
Xue Jun Wang ◽  
Sheng Ming Xu

With the rapid development and wide application of Li-ion batteries, cathode materials containing value metals Co, Ni and Mn are blended by several kind of metal oxide presently for pursuing high safe stability and low cost. The composition of spent Li-ion batteries has become complicated and optimum leaching condition varied. In this paper, leaching process for the mixture of pure LiCoO2and Li (Ni1/3Co1/3Mn1/3)O2was studied. With an increase in component of LiCoO2in mixed materials, the optimum leaching condition varied as: temperature from 60°C to 90°C, H2O2addition amount from 0.54 to 0.75ml/g and liquid-solid ratio from 10 to 20. According to this result, a real mixed spent batteries materials was recovered by being leached in 2M H2SO4at temperature of 90°C, liquid-solid ratio 20 and 0.6ml/g H2O2added. The leaching efficiencies of Co, Ni, Mn, Li were 96.88%, 93.71%, 92.12%, 99.43% respectively. Cu, Al and Fe in solution were removed by precipitation and solvent extraction. Finally, Ni, Co, Mn were extracted by D2EHPA for separating with Na+and other impurities, which is used as a raw materials for preparation of cathode active materials in batteries.


2013 ◽  
Vol 2013 (CICMT) ◽  
pp. 000187-000191
Author(s):  
Katsuya Teshima ◽  
Hajime Wagata ◽  
Shuji Oishi

All-solid-state lithium-ion rechargeable batteries (LIBs) consisting of solid electrolyte materials have attracted a number of research interests because no use of organic liquid electrolyte increases packaging density and intrinsic safety of LIB, which contribute the development on environmentally-friendly automobiles such as electric vehicle (EV), hybrid vehicle (HV), and plug-in hybrid vehicle (HEV), in addition to efficient utilization of electric energy in smart grid. Among various solid electrolytes, inorganic electrolyte materials have achieved relatively high lithium-ion conductivity and better stability at an ambient atmosphere. Nevertheless, there is a drawback that is relatively high internal resistance owing to relatively slow Li ion movement caused by low crystallinity of materials, scattering at interfaces such as current collector/electrode active materials and electrode active materials/electrolyte materials. In this context, we have proposed a concept, all-crystal-state LIB, in which all the component materials have high crystallinity and those interfaces are effective for Li ion diffusion. Here, we present the fabrication of oxide crystals and crystal layers via flux method and flux coating. Flux method is one of the solution processes in which idiomorphic highly crystalline materials can be obtained under the melting point of the target ones. In addition, it provides simple, low-cost and environmentally-benign pathway compared to conventional solid-state-reaction method. Flux coating method is developed to fabricate high-quality crystal layers (films) on various substrates. High-quality crystals and crystal layers of cathode, anode and electrolyte materials were successfully fabricated.


2011 ◽  
Vol 148-149 ◽  
pp. 67-70
Author(s):  
Feng Xiao ◽  
Liang Han ◽  
Xin Pan Chu ◽  
Jun Feng Xue ◽  
Qi Biao Chen ◽  
...  

Li-ion power battery which has a broad prospect of application in many industry fields is a new type of high power battery. The formation is a key process in battery manufacture. After formation, the active materials of anode and cathode in the battery can be activated. Consequently, the charge-discharge performance, self-discharge performance, reserve performance and some other comprehensive performances can be improved. Only after formation can batteries achieve the best performance. With the change of formation process, the formation and holding for a single battery has been changed to for a group. Therefor, a new type of battery parameter testing equipment needs to be designed, which can test a group of batteries automatically. This paper will introduce the design of this equipment thoroughly.


Sign in / Sign up

Export Citation Format

Share Document