scholarly journals Functional effects of Cx50 mutations associated with congenital cataracts

2014 ◽  
Vol 306 (3) ◽  
pp. C212-C220 ◽  
Author(s):  
Clio Rubinos ◽  
Krista Villone ◽  
Pallavi V. Mhaske ◽  
Thomas W. White ◽  
Miduturu Srinivas

Mutations in connexin50 (Cx50) cause dominant cataracts in both humans and mice. The exact mechanisms by which mutations cause these variable phenotypes are poorly understood. We have examined the functional properties of gap junctions made by three Cx50 mutations, V44E, D47N, and V79L, expressed in mammalian cell lines. V44E trafficked to the plasma membrane properly and formed gap junctional plaques. However, the mutant did not form functional gap junctions when expressed alone, or with wild-type (WT) Cx46 and Cx50, indicating that V44E is a dominant negative inhibitor of WT connexin function. In contrast, D47N subunits did not localize to junctional plaques or form functional homotypic gap junctions; however, mixed expression of D47N and WT subunits of either Cx50 or Cx46 resulted in functional intercellular channels, with high levels of coupling. Single-channel studies indicated that D47N formed heteromeric channels with WT Cx46 with unique properties. Unlike either V44E or D47N, V79L formed functional homotypic intercellular channels. However, the mutation caused an alteration in voltage gating and a dramatic reduction in the single-channel open probability, resulting in much lower levels of conductance in cells expressing V79L alone, or together with WT connexin subunits. Thus, each mutation produced distinct changes in the properties of junctional coupling. V44E failed to form intercellular channels in any configuration, D47N formed only heteromeric channels with WT connexins, and V79L formed homotypic and heteromeric channels with altered properties. These results suggest that unique interactions between mutant and wild-type lens connexins might underlie the development of various cataract phenotypes in humans.

2011 ◽  
Vol 300 (5) ◽  
pp. C1055-C1064 ◽  
Author(s):  
Jun-Jie Tong ◽  
Peter J. Minogue ◽  
Wenji Guo ◽  
Tung-Ling Chen ◽  
Eric C. Beyer ◽  
...  

Gap junction channels, which are made of connexins, are critical for intercellular communication, a function that may be disrupted in a variety of diseases. We studied the consequences of two cataract-associated mutations at adjacent positions at the first extracellular boundary in human connexin50 (Cx50), W45S and G46V. Both of these mutants formed gap junctional plaques when they were expressed in HeLa cells, suggesting that they trafficked to the plasma membrane properly. However, their functional properties differed. Dual two-microelectrode voltage-clamp studies showed that W45S did not form functional intercellular channels in paired Xenopus oocytes or hemichannel currents in single oocytes. When W45S was coexpressed with wild-type Cx50, the mutant acted as a dominant negative inhibitor of wild-type function. In contrast, G46V formed both functional gap junctional channels and hemichannels. G46V exhibited greatly enhanced currents compared with wild-type Cx50 in the presence of physiological calcium concentrations. This increase in hemichannel activity persisted when G46V was coexpressed with wild-type lens connexins, consistent with a dominant gain of hemichannel function for G46V. These data suggest that although these two mutations are in adjacent amino acids, they have very different effects on connexin function and cause disease by different mechanisms: W45S inhibits gap junctional channel function; G46V reduces cell viability by forming open hemichannels.


2005 ◽  
Vol 280 (23) ◽  
pp. 21739-21747 ◽  
Author(s):  
Guillermo J. Pérez

Tamoxifen has been reported to directly activate large conductance calcium-activated potassium (KCa) channels through the KCa β1 subunit, suggesting a cardio-protective role of this compound. The present study using knock-out (KO) mice for the KCa channel β1 subunit was aimed at understanding the molecular mechanisms of the effects of tamoxifen on arterial smooth muscle KCa channels. Single channel studies were conducted in excised patches from cerebral artery myocytes from both wild-type and KO animals. The present data demonstrated that tamoxifen can inhibit arterial KCa channels due to a major decrease in channel open probability (Po), a mechanism different from the reduction in single channel amplitude reported previously and also observed in the present work. A tamoxifen-induced decrease in Po was present in arterial KCa channels from both wild-type and β1 KO animals. This inhibition was concentration-dependent and partially reversible with a half-maximal concentration constant IC50 of 2.6 μm. The effect of tamoxifen was actually dual Single channel kinetic analysis showed that tamoxifen shortens both mean closed time and mean open time; the latter is probably due to an intermediate duration voltage-independent blocking mechanism. Thus, tamoxifen block would predominate when KCa channel Po is >0.1–0.2, limiting the maximum Po, whereas a leftward shift in voltage or Ca2+ activation curves can be observed for Po values lower than those values. This dual effect of tamoxifen appears to be independent of the β1 subunit. The molecular specificity of tamoxifen, or eventually other xenoestrogen derivatives, for the KCa channel β1 subunit is uncertain.


1995 ◽  
Vol 106 (4) ◽  
pp. 641-658 ◽  
Author(s):  
M E O'Leary ◽  
L Q Chen ◽  
R G Kallen ◽  
R Horn

A pair of tyrosine residues, located on the cytoplasmic linker between the third and fourth domains of human heart sodium channels, plays a critical role in the kinetics and voltage dependence of inactivation. Substitution of these residues by glutamine (Y1494Y1495/QQ), but not phenylalanine, nearly eliminates the voltage dependence of the inactivation time constant measured from the decay of macroscopic current after a depolarization. The voltage dependence of steady state inactivation and recovery from inactivation is also decreased in YY/QQ channels. A characteristic feature of the coupling between activation and inactivation in sodium channels is a delay in development of inactivation after a depolarization. Such a delay is seen in wild-type but is abbreviated in YY/QQ channels at -30 mV. The macroscopic kinetics of activation are faster and less voltage dependent in the mutant at voltages more negative than -20 mV. Deactivation kinetics, by contrast, are not significantly different between mutant and wild-type channels at voltages more negative than -70 mV. Single-channel measurements show that the latencies for a channel to open after a depolarization are shorter and less voltage dependent in YY/QQ than in wild-type channels; however the peak open probability is not significantly affected in YY/QQ channels. These data demonstrate that rate constants involved in both activation and inactivation are altered in YY/QQ channels. These tyrosines are required for a normal coupling between activation voltage sensors and the inactivation gate. This coupling insures that the macroscopic inactivation rate is slow at negative voltages and accelerated at more positive voltages. Disruption of the coupling in YY/QQ alters the microscopic rates of both activation and inactivation.


1997 ◽  
Vol 273 (4) ◽  
pp. F516-F529 ◽  
Author(s):  
Han Choe ◽  
Hao Zhou ◽  
Lawrence G. Palmer ◽  
Henry Sackin

ROMK channels play a key role in overall K balance by controlling K secretion across the apical membrane of mammalian cortical collecting tubule. In contrast to the family of strong inward rectifiers (IRKs), ROMK channels are markedly sensitive to intracellular pH. Using Xenopus oocytes, we have confirmed this pH sensitivity at both the single-channel and whole cell level. Reduction of oocyte pH from 6.8 to 6.4 (using a permeant acetate buffer) reduced channel open probability from 0.76 ± 0.02 to near zero ( n = 8), without altering single-channel conductance. This was due to the appearance of a long-lived closed state at low internal pH. We have confirmed that a lysine residue (K61 on ROMK2; K80 on ROMK1), NH2 terminal to the first putative transmembrane segment (M1), is primarily responsible for conferring a steep pH sensitivity to ROMK (B. Fakler, J. Schultz, J. Yang, U. Schulte, U. Bråandle, H. P. Zenner, L. Y. Jan, and J. P. Ruppersberg. EMBO J. 15: 4093–4099, 1996). However, the apparent p K a of ROMK also depends on another residue in a highly conserved, mildly hydrophobic area: T51 on ROMK2 (T70 on ROMK1). Replacing this neutral threonine (T51) with a negatively charged glutamate shifted the apparent p K a for inward conductance from 6.5 ± 0.01 ( n = 8, wild type) to 7.0 ± 0.02 ( n = 5, T51E). On the other hand, replacing T51 with a positively charged lysine shifted the apparent p K a in the opposite direction, from 6.5 ± 0.01 ( n = 8, wild type) to 6.0 ± 0.02 ( n = 9, T51K). The opposite effects of the glutamate and lysine substitutions at position 51 (ROMK2) are consistent with a model in which T51 is physically close to K61 and alters either the local pH or the apparent p K a via an electrostatic mechanism. In addition to its effects on pH sensitivity, the mutation T51E also decreased single-channel conductance from 34.0 ± 1.0 pS ( n = 8, wild type) to 17.4 ± 1 pS ( n = 9, T51E), reversed the voltage gating of the channel, and significantly increased open-channel noise. These effects on single-channel currents suggest that the T51 residue, located in a mildly hydrophobic area of ROMK2, also interacts with the hydrophobic region of the permeation pathway.


2013 ◽  
Vol 304 (2) ◽  
pp. F207-F213 ◽  
Author(s):  
Jingxin Chen ◽  
Thomas R. Kleyman ◽  
Shaohu Sheng

Epithelial Na+ channel (ENaC) mutations are associated with several human disorders, underscoring the importance of these channels in human health. Recent human genome sequencing projects have revealed a large number of ENaC gene variations, several of which have been found in individuals with salt-sensitive hypertension, cystic fibrosis, and other disorders. However, the functional consequences of most variants are unknown. In this study, we used the Xenopus oocyte expression system to examine the functional properties of a human ENaC variant. Oocytes expressing αβγL511Q human ENaCs showed 4.6-fold greater amiloride-sensitive currents than cells expressing wild-type channels. The γL511Q variant did not significantly alter channel surface expression. Single channel recordings revealed that the variant had fourfold higher open probability than wild type. In addition, γL511Q largely eliminated the Na+ self-inhibition response, which reflects a downregulation of ENaC open probability by extracellular Na+. Moreover, γL511Q diminished chymotrypsin-induced activation of the mutant channel. We conclude that γL511Q is a gain-of-function human ENaC variant. Our results suggest that γL511Q enhances ENaC activity by increasing channel open probability and dampens channel regulation by extracellular Na+ and proteases.


2018 ◽  
Vol 315 (5) ◽  
pp. H1250-H1257 ◽  
Author(s):  
Jérôme Clatot ◽  
Yang Zheng ◽  
Aurore Girardeau ◽  
Haiyan Liu ◽  
Kenneth R. Laurita ◽  
...  

Mutations in voltage-gated Na+ channels have been linked to several channelopathies leading to a wide variety of diseases including cardiac arrhythmias, epilepsy, and myotonia. We have previously demonstrated that voltage-gated Na+ channel (Nav)1.5 trafficking-deficient mutant channels could lead to a dominant negative effect by impairing trafficking of the wild-type (WT) channel. We also reported that voltage-gated Na+ channels associate as dimers with coupled gating properties. Here, we hypothesized that the dominant negative effect of mutant Na+ channels could also occur through coupled gating. This was tested using cell surface biotinylation and single channel recordings to measure the gating probability and coupled gating of the dimers. As previously reported, coexpression of Nav1.5-L325R with WT channels led to a dominant negative effect, as reflected by a 75% reduction in current density. Surprisingly, cell surface biotinylation showed that Nav1.5-L325R mutant is capable of trafficking, with 40% of Nav1.5-L325R reaching the cell surface when expressed alone. Importantly, even though a dominant negative effect on the Na+ current is observed when WT and Nav1.5-L325R are expressed together, the total Nav channel cell surface expression was not significantly altered compared with WT channels alone. Thus, the trafficking deficiency could not explain the 75% decrease in inward Na+ current. Interestingly, single channel recordings showed that Nav1.5-L325R exerted a dominant negative effect on the WT channel at the gating level. Both coupled gating and gating probability of WT:L325R dimers were drastically impaired. We conclude that dominant negative suppression exerted by Nav1.5 mutants can also be caused by impairing the WT gating probability, a mechanism resulting from the dimerization and coupled gating of voltage-gated Na+ channel α-subunits. NEW & NOTEWORTHY The presence of dominant negative mutations in the Na+ channel gene leading to Brugada syndrome was supported by our recent findings that Na+ channel α-subunits form dimers. Up until now, the dominant negative effect was thought to be caused by the interaction of the wild-type Na+ channel with trafficking-deficient mutant channels. However, the present study demonstrates that coupled gating of voltage-gated Na+ channels can also be responsible for the dominant negative effect leading to arrhythmias.


1999 ◽  
Vol 276 (6) ◽  
pp. C1443-C1446 ◽  
Author(s):  
J. D. Pal ◽  
V. M. Berthoud ◽  
E. C. Beyer ◽  
D. Mackay ◽  
A. Shiels ◽  
...  

Mutations in gap junctional channels have been linked to certain forms of inherited congenital cataract (D. Mackay, A. Ionides, V. Berry, A. Moore, S. Bhattacharya, and A. Shiels. Am. J. Hum. Genet. 60: 1474–1478, 1997; A. Shiels, D. Mackay, A. Ionides, V. Berry, A. Moore, and S. Bhattacharya. Am. J. Hum. Genet. 62: 526–532, 1998). We used the Xenopus oocyte pair system to investigate the functional properties of a missense mutation in the human connexin 50 gene (P88S) associated with zonular pulverulent cataract. The associated phenotype for the mutation is transmitted in an autosomal dominant fashion. Xenopus oocytes injected with wild-type connexin 50 cRNA developed gap junctional conductances of ∼5 μS 4–7 h after pairing. In contrast, the P88S mutant connexin failed to form functional gap junctional channels when paired homotypically. Moreover, the P88S mutant functioned in a dominant negative manner as an inhibitor of human connexin 50 gap junctional channels when coinjected with wild-type connexin 50 cRNA. Cells injected with 1:5 and 1:11 ratios of P88S mutant to wild-type cRNA exhibited gap junctional coupling of ∼8% and 39% of wild-type coupling, respectively. Based on these findings, we conclude that only one P88S mutant subunit is necessary per gap junctional channel to abolish channel function.


2000 ◽  
Vol 279 (3) ◽  
pp. C596-C602 ◽  
Author(s):  
Jay D. Pal ◽  
Xiaoqin Liu ◽  
Donna Mackay ◽  
Alan Shiels ◽  
Viviana M. Berthoud ◽  
...  

Human connexin46 (hCx46) forms gap junctional channels interconnecting lens fiber cells and appears to be critical for normal lens function, because hCx46 mutations have been linked to congenital cataracts. We studied two hCx46 mutants, N63S, a missense mutation in the first extracellular domain, and fs380, a frame-shift mutation that shifts the translational reading frame at amino acid residue 380. We expressed wild-type Cx46 and the two mutants in Xenopus oocytes. Production of the expressed proteins was verified by SDS-PAGE after metabolic labeling with [35S]methionine or by immunoblotting. Dual two-microelectrode voltage-clamp studies showed that hCx46 formed both gap junctional channels in paired Xenopus oocytes and hemi-gap junctional channels in single oocytes. In contrast, neither of the two cataract-associated hCx46 mutants could form intercellular channels in paired Xenopus oocytes. The hCx46 mutants were also impaired in their ability to form hemi-gap-junctional channels. When N63S or fs380 was coexpressed with wild-type connexins, both mutations acted like “loss of function” rather than “dominant negative” mutations, because they did not affect the gap junctional conductance induced by either wild-type hCx46 or wild-type hCx50.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Long-Gang Niu ◽  
Ping Liu ◽  
Zhao-Wen Wang ◽  
Bojun Chen

Slo2 potassium channels play important roles in neuronal function, and their mutations in humans may cause epilepsies and cognitive defects. However, it is largely unknown how Slo2 is regulated by other proteins. Here we show that the function of C. elegans Slo2 (SLO-2) depends on adr-1, a gene important to RNA editing. ADR-1 promotes SLO-2 function not by editing the transcripts of slo-2 but those of scyl-1, which encodes an orthologue of mammalian SCYL1. Transcripts of scyl-1 are greatly decreased in adr-1 mutants due to deficient RNA editing at a single adenosine in their 3’-UTR. SCYL-1 physically interacts with SLO-2 in neurons. Single-channel open probability (Po) of neuronal SLO-2 is ~50% lower in scyl-1 knockout mutant than wild type. Moreover, human Slo2.2/Slack Po is doubled by SCYL1 in a heterologous expression system. These results suggest that SCYL-1/SCYL1 is an evolutionarily conserved regulator of Slo2 channels.


2009 ◽  
Vol 284 (24) ◽  
pp. 16156-16163 ◽  
Author(s):  
Matthew J. Betzenhauser ◽  
Larry E. Wagner ◽  
Hyung Seo Park ◽  
David I. Yule

ATP is known to increase the activity of the type-1 inositol 1,4,5-trisphosphate receptor (InsP3R1). This effect is attributed to the binding of ATP to glycine rich Walker A-type motifs present in the regulatory domain of the receptor. Only two such motifs are present in neuronal S2+ splice variant of InsP3R1 and are designated the ATPA and ATPB sites. The ATPA site is unique to InsP3R1, and the ATPB site is conserved among all three InsP3R isoforms. Despite the fact that both the ATPA and ATPB sites are known to bind ATP, the relative contribution of these two sites to the enhancing effects of ATP on InsP3R1 function is not known. We report here a mutational analysis of the ATPA and ATPB sites and conclude neither of these sites is required for ATP modulation of InsP3R1. ATP augmented InsP3-induced Ca2+ release from permeabilized cells expressing wild type and ATP-binding site-deficient InsP3R1. Similarly, ATP increased the single channel open probability of the mutated InsP3R1 to the same extent as wild type. ATP likely exerts its effects on InsP3R1 channel function via a novel and as yet unidentified mechanism.


Sign in / Sign up

Export Citation Format

Share Document