scholarly journals Different consequences of cataract-associated mutations at adjacent positions in the first extracellular boundary of connexin50

2011 ◽  
Vol 300 (5) ◽  
pp. C1055-C1064 ◽  
Author(s):  
Jun-Jie Tong ◽  
Peter J. Minogue ◽  
Wenji Guo ◽  
Tung-Ling Chen ◽  
Eric C. Beyer ◽  
...  

Gap junction channels, which are made of connexins, are critical for intercellular communication, a function that may be disrupted in a variety of diseases. We studied the consequences of two cataract-associated mutations at adjacent positions at the first extracellular boundary in human connexin50 (Cx50), W45S and G46V. Both of these mutants formed gap junctional plaques when they were expressed in HeLa cells, suggesting that they trafficked to the plasma membrane properly. However, their functional properties differed. Dual two-microelectrode voltage-clamp studies showed that W45S did not form functional intercellular channels in paired Xenopus oocytes or hemichannel currents in single oocytes. When W45S was coexpressed with wild-type Cx50, the mutant acted as a dominant negative inhibitor of wild-type function. In contrast, G46V formed both functional gap junctional channels and hemichannels. G46V exhibited greatly enhanced currents compared with wild-type Cx50 in the presence of physiological calcium concentrations. This increase in hemichannel activity persisted when G46V was coexpressed with wild-type lens connexins, consistent with a dominant gain of hemichannel function for G46V. These data suggest that although these two mutations are in adjacent amino acids, they have very different effects on connexin function and cause disease by different mechanisms: W45S inhibits gap junctional channel function; G46V reduces cell viability by forming open hemichannels.

2000 ◽  
Vol 279 (3) ◽  
pp. C596-C602 ◽  
Author(s):  
Jay D. Pal ◽  
Xiaoqin Liu ◽  
Donna Mackay ◽  
Alan Shiels ◽  
Viviana M. Berthoud ◽  
...  

Human connexin46 (hCx46) forms gap junctional channels interconnecting lens fiber cells and appears to be critical for normal lens function, because hCx46 mutations have been linked to congenital cataracts. We studied two hCx46 mutants, N63S, a missense mutation in the first extracellular domain, and fs380, a frame-shift mutation that shifts the translational reading frame at amino acid residue 380. We expressed wild-type Cx46 and the two mutants in Xenopus oocytes. Production of the expressed proteins was verified by SDS-PAGE after metabolic labeling with [35S]methionine or by immunoblotting. Dual two-microelectrode voltage-clamp studies showed that hCx46 formed both gap junctional channels in paired Xenopus oocytes and hemi-gap junctional channels in single oocytes. In contrast, neither of the two cataract-associated hCx46 mutants could form intercellular channels in paired Xenopus oocytes. The hCx46 mutants were also impaired in their ability to form hemi-gap-junctional channels. When N63S or fs380 was coexpressed with wild-type connexins, both mutations acted like “loss of function” rather than “dominant negative” mutations, because they did not affect the gap junctional conductance induced by either wild-type hCx46 or wild-type hCx50.


1999 ◽  
Vol 276 (6) ◽  
pp. C1443-C1446 ◽  
Author(s):  
J. D. Pal ◽  
V. M. Berthoud ◽  
E. C. Beyer ◽  
D. Mackay ◽  
A. Shiels ◽  
...  

Mutations in gap junctional channels have been linked to certain forms of inherited congenital cataract (D. Mackay, A. Ionides, V. Berry, A. Moore, S. Bhattacharya, and A. Shiels. Am. J. Hum. Genet. 60: 1474–1478, 1997; A. Shiels, D. Mackay, A. Ionides, V. Berry, A. Moore, and S. Bhattacharya. Am. J. Hum. Genet. 62: 526–532, 1998). We used the Xenopus oocyte pair system to investigate the functional properties of a missense mutation in the human connexin 50 gene (P88S) associated with zonular pulverulent cataract. The associated phenotype for the mutation is transmitted in an autosomal dominant fashion. Xenopus oocytes injected with wild-type connexin 50 cRNA developed gap junctional conductances of ∼5 μS 4–7 h after pairing. In contrast, the P88S mutant connexin failed to form functional gap junctional channels when paired homotypically. Moreover, the P88S mutant functioned in a dominant negative manner as an inhibitor of human connexin 50 gap junctional channels when coinjected with wild-type connexin 50 cRNA. Cells injected with 1:5 and 1:11 ratios of P88S mutant to wild-type cRNA exhibited gap junctional coupling of ∼8% and 39% of wild-type coupling, respectively. Based on these findings, we conclude that only one P88S mutant subunit is necessary per gap junctional channel to abolish channel function.


2000 ◽  
Vol 350 (3) ◽  
pp. 677-683 ◽  
Author(s):  
Ana M. PAJOR ◽  
Esther S. KAHN ◽  
Rama GANGULA

The role of cationic amino acids in the Na+/dicarboxylate co-transporter NaDC-1 was investigated by site-directed mutagenesis and subsequent expression of mutant transporters in Xenopus oocytes. Of the ten residues chosen for mutagenesis, eight (Lys-34, Lys-107, Arg-108, Lys-333, Lys-390, Arg-368, Lys-414 and Arg-541) were found to be non-essential for function or targeting. Only two conserved residues, Lys-84 (at the cytoplasmic end of helix 3) and Arg-349 (at the extracellular end of helix 7), were found to be important for transport. Both mutant transporters were expressed at the plasma membrane. The mutation of Lys-84 to Ala resulted in an increased Km for succinate of 1.8mM, compared with 0.3mM in the wild-type NaDC-1. The R349A mutant had Na+ and citrate kinetics that were similar to those of the wild type. However, succinate handling in the R349A mutant was altered, with evidence of inhibition at high succinate concentrations. In conclusion, charge neutralization of Lys-84 and Arg-349 in NaDC-1 affects succinate handling, suggesting that these residues might have roles in substrate binding.


1998 ◽  
Vol 72 (2) ◽  
pp. 1270-1279 ◽  
Author(s):  
Mousumi Paul ◽  
Suparna Mazumder ◽  
Nicholas Raja ◽  
M. Abdul Jabbar

ABSTRACT Human immunodeficiency virus type 1 Vpu is a multifunctional phosphoprotein composed of the N-terminal transmembrane (VpuTM) and C-terminal cytoplasmic domains. Each of these domains regulates a distinct function of the protein; the transmembrane domain is critical in virus release, and phosphorylation of the cytoplasmic domain is necessary for CD4 proteolysis. We carried our experiments to identify amino acids in the VpuTM domain that are important in the process of virus-like particle (VLP) release from HeLa cells. VLPs are released from the plasma membrane of HeLa cells at constitutive levels, and Vpu expression enhanced the release of VLPs by a factor of 10 to 15. Deletion of two to five amino acids from both N- and C-terminal ends or the middle of the VpuTM domain generated mutant Vpu proteins that have lost the ability to enhance VLP release. These deletion mutants have not lost the ability to associate with the wild-type or mutant Vpu proteins and formed complexes with equal efficiency. They were also transported normally to the Golgi complex. Furthermore, a Vpu protein having the CD4 transmembrane and Vpu cytoplasmic domains was completely inactive, and Vpu proteins harboring hybrid Vpu-CD4 TM domains were also defective in the ability to enhance the release of VLPs. When tested for functional complementation in cotransfected cells, two inactive proteins were not able to reconstitute Vpu activity that enhances the release of Gag particles. Coexpression of functional CD4/Vpu hybrids or wild-type Vpu with inactive mutant CD4/Vpu proteins revealed that mutations in the VpuTM domain could dominantly interfere with Vpu activity in Gag release. Taken together, these results demonstrated that the structural integrity of the VpuTM domain is critical for Vpu activity in the release of VLPs from the plasma membrane of mammalian cells.


2014 ◽  
Vol 306 (3) ◽  
pp. C212-C220 ◽  
Author(s):  
Clio Rubinos ◽  
Krista Villone ◽  
Pallavi V. Mhaske ◽  
Thomas W. White ◽  
Miduturu Srinivas

Mutations in connexin50 (Cx50) cause dominant cataracts in both humans and mice. The exact mechanisms by which mutations cause these variable phenotypes are poorly understood. We have examined the functional properties of gap junctions made by three Cx50 mutations, V44E, D47N, and V79L, expressed in mammalian cell lines. V44E trafficked to the plasma membrane properly and formed gap junctional plaques. However, the mutant did not form functional gap junctions when expressed alone, or with wild-type (WT) Cx46 and Cx50, indicating that V44E is a dominant negative inhibitor of WT connexin function. In contrast, D47N subunits did not localize to junctional plaques or form functional homotypic gap junctions; however, mixed expression of D47N and WT subunits of either Cx50 or Cx46 resulted in functional intercellular channels, with high levels of coupling. Single-channel studies indicated that D47N formed heteromeric channels with WT Cx46 with unique properties. Unlike either V44E or D47N, V79L formed functional homotypic intercellular channels. However, the mutation caused an alteration in voltage gating and a dramatic reduction in the single-channel open probability, resulting in much lower levels of conductance in cells expressing V79L alone, or together with WT connexin subunits. Thus, each mutation produced distinct changes in the properties of junctional coupling. V44E failed to form intercellular channels in any configuration, D47N formed only heteromeric channels with WT connexins, and V79L formed homotypic and heteromeric channels with altered properties. These results suggest that unique interactions between mutant and wild-type lens connexins might underlie the development of various cataract phenotypes in humans.


1999 ◽  
Vol 277 (6) ◽  
pp. C1202-C1209 ◽  
Author(s):  
Robert S. Haworth ◽  
James Sinnett-Smith ◽  
Enrique Rozengurt ◽  
Metin Avkiran

The regulation of plasma membrane Na+/H+exchanger (NHE) activity by protein kinase D (PKD), a novel protein kinase C- and phorbol ester-regulated kinase, was investigated. To determine the effect of PKD on NHE activity in vivo, intracellular pH (pHi) measurements were made in COS-7 cells by microepifluorescence using the pH indicator cSNARF-1. Cells were transfected with empty vector (control), wild-type PKD, or its kinase-deficient mutant PKD-K618M, together with green fluorescent protein (GFP). NHE activity, as reflected by the rate of acid efflux ( J H), was determined in single GFP-positive cells following intracellular acidification. Overexpression of wild-type PKD had no significant effect on J H(3.48 ± 0.25 vs. 3.78 ± 0.24 mM/min in control at pHi 7.0). In contrast, overexpression of PKD-K618M increased J H (5.31 ± 0.57 mM/min at pHi 7.0; P < 0.05 vs. control). Transfection with these constructs produced similar effects also in A-10 cells, indicating that native PKD may have an inhibitory effect on NHE in both cell types, which is relieved by a dominant-negative action of PKD-K618M. Exposure of COS-7 cells to phorbol ester significantly increased J H in control cells but failed to do so in cells overexpressing either wild-type PKD (due to inhibition by the overexpressed PKD) or PKD-K618M (because basal J Hwas already near maximal). A fusion protein containing the cytosolic regulatory domain (amino acids 637–815) of NHE1 (the ubiquitous NHE isoform) was phosphorylated in vitro by wild-type PKD, but with low stoichiometry. These data suggest that PKD inhibits NHE activity, probably through an indirect mechanism, and represents a novel pathway in the regulation of the exchanger.


2007 ◽  
Vol 81 (17) ◽  
pp. 8977-8988 ◽  
Author(s):  
Elizabeth Stansell ◽  
Robert Apkarian ◽  
Sarka Haubova ◽  
William E. Diehl ◽  
Ewan M. Tytler ◽  
...  

ABSTRACT Mason-Pfizer monkey virus (M-PMV) capsids that have assembled in the cytoplasm must be transported to and associate with the plasma membrane prior to being enveloped by a lipid bilayer during viral release. Structural studies have identified a positive-charge density on the membrane-proximal surface of the matrix (MA) protein component of the Gag polyprotein. To investigate if basic amino acids in MA play a role in intracellular transport and capsid-membrane interactions, mutants were constructed in which lysine and arginine residues (R10, K16, K20, R22, K25, K27, K33, and K39) potentially exposed on the capsid surface were replaced singly and in pairs by alanine. A majority of the charge substitution mutants were released less efficiently than the wild type. Electron microscopy of mutant Gag-expressing cells revealed four distinct phenotypes: K16A and K20A immature capsids accumulated on and budded into intracellular vesicles; R10A, K27A, and R22A capsid transport was arrested at the cellular cortical actin network, while K25A immature capsids were dispersed throughout the cytoplasm and appeared to be defective at an earlier stage of intracellular transport; and the remaining mutant (K33A and K39A) capsids accumulated at the inner surface of the plasma membrane. All mutants that released virions exhibited near-wild-type infectivity in a single-round assay. Thus, basic amino acids in the M-PMV MA define both cellular location and efficiency of virus release.


1999 ◽  
Vol 114 (5) ◽  
pp. 685-700 ◽  
Author(s):  
Thomas P. Flagg ◽  
Margaret Tate ◽  
Jean Merot ◽  
Paul A. Welling

Mutations in the inward rectifying renal K+ channel, Kir 1.1a (ROMK), have been linked with Bartter's syndrome, a familial salt-wasting nephropathy. One disease-causing mutation removes the last 60 amino acids (332–391), implicating a previously unappreciated domain, the extreme COOH terminus, as a necessary functional element. Consistent with this hypothesis, truncated channels (Kir 1.1a 331X) are nonfunctional. In the present study, the roles of this domain were systematically evaluated. When coexpressed with wild-type subunits, Kir 1.1a 331X exerted a negative effect, demonstrating that the mutant channel is synthesized and capable of oligomerization. Plasmalemma localization of Kir 1.1a 331X green fluorescent protein (GFP) fusion construct was indistinguishable from the GFP–wild-type channel, demonstrating that mutant channels are expressed on the oocyte plasma membrane in a nonconductive or locked-closed conformation. Incremental reconstruction of the COOH terminus identified amino acids 332–351 as the critical residues for restoring channel activity and uncovered the nature of the functional defect. Mutant channels that are truncated at the extreme boundary of the required domain (Kir 1.1a 351X) display marked inactivation behavior characterized by frequent occupancy in a long-lived closed state. A critical analysis of the Kir 1.1a 331X dominant negative effect suggests a molecular mechanism underlying the aberrant closed-state stabilization. Coexpression of different doses of mutant with wild-type subunits produced an intermediate dominant negative effect, whereas incorporation of a single mutant into a tetrameric concatemer conferred a complete dominant negative effect. This identifies the extreme COOH terminus as an important subunit interaction domain, controlling the efficiency of oligomerization. Collectively, these observations provide a mechanistic basis for the loss of function in one particular Bartter's-causing mutation and identify a structural element that controls open-state occupancy and determines subunit oligomerization. Based on the overlapping functions of this domain, we speculate that intersubunit interactions within the COOH terminus may regulate the energetics of channel opening.


2003 ◽  
Vol 77 (9) ◽  
pp. 5360-5369 ◽  
Author(s):  
Luc Snyers ◽  
Hannes Zwickl ◽  
Dieter Blaas

ABSTRACT Using several approaches, we investigated the importance of clathrin-mediated endocytosis in the uptake of human rhinovirus serotype 2 (HRV2). By means of confocal immunofluorescence microscopy, we show that K+ depletion strongly reduces HRV2 internalization. Viral uptake was also substantially reduced by extraction of cholesterol from the plasma membrane with methyl-β-cyclodextrin, which can inhibit clathrin-mediated endocytosis. In accordance with these data, overexpression of dynamin K44A in HeLa cells prevented HRV2 internalization, as judged by confocal immunofluorescence microscopy, and strongly reduced infection. We also demonstrate that HRV2 bound to the surface of HeLa cells is localized in coated pits but not in caveolae. Finally, transient overexpression of the specific dominant-negative inhibitors of clathrin-mediated endocytosis, the SH3 domain of amphiphysin and the C-terminal domain of AP180, potently inhibited internalization of HRV2. Taken together, these results indicate that HRV2 uses clathrin-mediated endocytosis to infect cells.


Sign in / Sign up

Export Citation Format

Share Document